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Summary 

Finite elastic deformations of an elastic string subjected to a vertical and a normal force are investigated, 
supplementing earlier results by Dickey and adding some new results, including considerations of the stability of 
the solutions. The relation of the solutions of the exact nonlinear theory to an approximate engineering theory of 
FSppl is discussed. 

1. Introduction 

In this paper we consider the problem of a nonlinear elastic string, discussed earlier by 
Dickey [1,2] and Carrier [3]. In particular, reference is made to Chapter 2 of [1], where the 
problem to describe all possible equilibrium solutions of a string acted upon by a constant 
vertical force is posed. We here discuss some extensions and additional results. Further- 
more, it is felt that the description given by Dickey deserves some comments. 

We first rectify an error in the solution for the inextensible string. The elementary 
approximate theory of F6ppl is then given a more complete treatment including a 
discussion of the stability of the solutions obtained in [1], and the relation of the solution 
of the exact fully nonlinear theory of elastic strings to the F6ppl solution is considered. 
The range of validity of the F6ppl approximation has previously been determined by the 
second-named author for nonlinear circular elastic membrane problems [4]. The instability 
of the compressive exact solutions of [ 1] is obtained on the basis of the energy criterion. 

Next we obtain a new solution for the normally loaded string, which is multi-valued in 
certain ranges of the load parameter, in some way analogous to the multiplicity of 
compressive solutions of a vertically loaded circular membrane [5], but different from the 
vertically loaded string. It is found that multiple tensile solutions may also exist, in 
contrast to the vertically loaded string, where the tensile solution for a given load is always 
unique. If the load is conservative, compressive solutions are again shown to be unstable. 

Finally the stability of the static solutions is examined by means of the kinetic method, 
which provides a generally more acceptable stability criterion than the static potential 
energy criterion. The latter is restricted to conservative problems; moreover, its applicabil- 
ity in continuum mechanics has not been rigorously established as yet (e.g. see the 
discussion by Koiter [6]). 

* Part of the results were presented by the second-named author at a meeting on Continuum Mechanics in 
Oberwolfach, January 1980. 
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2. The inextensible string 

Assuming symmetric deformations, with 2L the length of the string and 21 the distance of 
its end points, the equilibrium position of a string subjected to a constant vertical force is 
given by the variational problem [1] 

v = f 0 ~ ¢  1 + (y,)2 d x =  stationary, fo subject to ¢1 + (y,)2 dx  = L (1) 

where y(x) must satisfy y'(0) = 0 and y(l) = a > 0. The solution of the Euler equation of 
(1) is the well-known catenary 

y (x )  = A cosh(x/A)-X. 

The constant of integration A is determined from the constraint in (1), which leads to the 
condition 

s inh(l /A) = L /A  = ( L / l  ) / (  I/A ). (2) 

For L > I, this equation has one solution for A > 0 and one solution for A < 0, contrary 
to the claim in [1] that there is one solution for A > 0 and two solutions for A < 0. Thus 
the behaviour of the inextensible string is different from that of the elastic string, which 
will be discussed in what follows. Note that A < 0 implies X < 0, because of y(l) = a > O, 
which means a negative tension. 

The solution for A < 0 is easily shown to be unstable on the basis of the energy 
criterion. Denote the integrand of (1) by F(y, y'), then a necessary condition of Legendre 
[7] for the potential energy to have a minimum is that ~2F/ay'2is non-negative. From 

F = ( y + X ) ¢ l + y  '2, 32F/Oy'2=(y+X)( l+y '2) -3 /2  

it is seen that this condition is violated for y + X < 0, that is, for A < 0. 

Remark. The catenary problem has an interesting two-dimensional analogue that goes 
back to Jellet [8] in 1850, but that has only recently been solved [9,10]: 

fGf(z + X)¢l  + z, 2 + z, y2 d x d y =  stationary. 

3. The Fi~ppl theory of the elastic string 

Consider a linear elastic material, that is, the stress T is related to the strain c by Hooke's 
law T = Ec. The potential energy of a vertically loaded string of length 2l is then given by 

(3) 

where P(~) is a vertical load (force per unit undeformed length divided by the cross-sec- 
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tional area of the string) and W is the vertical displacement which is assumed to vanish at 
the ends, 

W(I)  = W ( - l )  = O. (4) 

If U denotes the horizontal displacement, the basic assumptions of the Frppl  approximate 
theory of strings and membranes are: U << W and W small but finite. Thus the strain-dis- 
placement relation is c = U' + ½(W') 2, the prime denoting differentiation with respect to ~, 
and the energy functional (3) is 

(3a) 

Now 8V = 0, for all admissible U, W, yields the Euler equations 

0, (5) 

(6) 

which can be re-written in the form 

U ' +  l(W')Z = ,  = constant, (7) 

e ( u '  +½(w')2)w" + 0. (8) 

From (7) we have ~ and T constant, so that equation (8), TW" = - P ( ~ )  can be integrated, 
the two constants of integration being determined by (4). Substitution of W' into (7) yields 
U. For uniform load P = const the results are, with an arbitrary constant U 0 

P z T p2 3 .  
W ( ~ ) = ~ ( I  _~2 ) ,  U ( ~ ) = ~ - ~ - - ~  . U  o. (9) 

At the ends +l ,  we may prescribe either the stress T ( + I ) =  T O or the horizontal 
displacement U(+  l ) =  + N. In the following we refer to these two boundary problems as 
Problem S or Problem H, respectively. From (8) and (9) we have immediately 

Theorem 1. The solution of Problem S is unique for all T O > 0 and for all T O < 0, except 
for a uniform translation U 0. There is no solution for T O = 0 unless P = 0. 

Imposing the boundary conditions U ( _ l ) =  +N,  we find U0=0 and ( I / E ) T -  
p213/6T2= N, which is a cubic equation for the unknown T. It can be rewritten in the 
form 

NE 
F(A) :=A(c°+AlZ=~EPZl2 '  Co:= 1 ' A : = T - c ° "  (101 

Equations (9) and (10) agree with results of Dickey [1], who observed that Eq. (10) has a 
unique solution A > 0 if c o >~ 0, that is for U(I) >~ O, and that Eq. (10) may have three 
solutions if c o < 0 and P is sufficiently small. 
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In order to describe the range of non-uniqueness more precisely and to display the 
dependence of the solution on a single parameter 8, it is appropriate to introduce the 
dimensionless variables (for Problem H) 

W(._~) -I/3 U(~) -2/3 ' 8..:..N(P_/) -2/3 
' ' x = 7 '  7 - -  • 

Then the solution (9) and (10) can be written in the form 

A-- t /2~ = (3/2)1/2(1 - x 2 ) ,  A--lf i= ~ x -  x 3, g =  1 + (8 /A-) ,  (9a) 

where the positive constant A-has to be determined from 

p ( y ) :  - -  A - ( 8  + A - )  2 = (lOa) 

It is seen that the dimensionless solution 17, ~ depends on 8 only, that is, essentially on the 
ratio U(I)/P 2/3. Now, if 8 < 0, we find from (10a) one, two or three solutions for A- 
depending on whether 181 is less, equal or greater than (9/8)  1/3, respectively. We 
summarize the results in 

Theorem 2. Consider Problem H of the FiSppl approximation for the elastic string under a 
constant vertical load P. If 8 >_- 0, there is a unique solution for all P given by (9) with 
U 0 = 0, T =  c o + A, or by (9a), with A or A-uniquely determined from (10) or (10a), 
respectively. The solution is tensile, that is, T > 0. - If 8 < 0, Problem H has a unique 
tensile solution for all P, with A or A-now being defined as the largest root of the cubic 
equation (10) or (10a). In addition, there exist two (or one) compressive solutions T < 0, if 
and only if 181 is greater than (or equal) (9/8)  1/3. These solutions are again given by (9) or 
(9a), where A or A-is one of the two smaller roots of (10) or (10a), respectively. 

Next we show that all solutions with T <  0 are unstable according to the energy 
criterion. Denoting the integrand of (3a) by 2F(U, W, U', W'), the Legendre condition 
used above now requires that the quadratic form of the matrix 

F,u,u, F,u,w, ) 

F, u'w' F, w'w' 

is non-negative. A comma denotes partial differentiation. From 

F,u,v,F,w, w, - F2v,w , = U' + ~(W') 2 - (W')  2 = c = T I E  

it follows that Legendre's condition is violated for T < 0, hence all compressive solutions 
described in Theorems 1 and 2 are unstable. 

It is of interest to compare the potential energies in the range - 8  > (9/8)  I/3, where 
three solutions of Problem H exist. Substituting the solution into (3) and using (10) and 
(10a), we obtain for the potential energy 

V(e,N)=T c(co+A)(co-3A)=lE - -  + A-- ) (8  - 3 A - ) .  (11) 
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For  given P and c o = NEll, A is determined from (10), hence V(P, N) is not single-valued 
if ( -  8 ) >  (9 /8)  1/3, because (10) has three solutions in that case. 

Theorem 3. For 8 < 0, 181 > (9/8)  1/3, denote the solutions of (10) by Ai, i = 1, 2, 3, with 
A 1 < A 2 < A 3, and the corresponding energies V(P, N) by V i. Then V l > V 2 > V3; for the 
compressive solutions V 1 > 0, V 2 > 0 holds, for the tensile solution V 3 < 0. 

Proof. The functions F( A)= A( c o + .4) 2 and V( A)= (c o + A)( c o - 3.4)/4c I are sketched 
in Fig. 1 for c o < 0 .  Since both F a n d  V h a v e  a maximum at A - - - - C o / 3 ,  and V i s  
symmetric with respect to the vertical line A = - Co/3 while F is not, it is a simple matter  
to verify that the segments a = - ( % / 3 ) - . 4 1  and b = .42 + ( % / 3 )  in Fig. 1 satisfy a < b,' 
so that we have indeed V 1 > V 2 > 0 from the intersections A =.4i with V(.4). A 3 > - c  o 
implies V 3 < 0. There is no doubt that for ( - 8 ) >  (9 /8)  1/3 the solution corresponding to 
A 3 is stable. 

The solution (9) of Problem H has the symmetry property 

u(0)=0, w'(0)=0. (12) 

The same conclusion can be verified for a variable load P ( ~ ) = P ( - ~ ) .  Integrating 
TW"= -P(~), with P(~)  piecewise continuous in [ - l ,  l], and imposing the boundary 
conditions W( + 1) = 0, we first obtain 

l Q(s)ds+ ] - T _, ~-i-~(~+l)f_Q(s)ds, Q(s): =f_'P($)d~. (13) 

Substitution of W'(~) into U' + ( W ' ) 2 / 2  = ~ and integration yields 

U ( " =  u ° + T  ( ' +  l ' - ~ - ~  f* Q2(s'ds+ [ ( ' + l ' O -  2f* Q(s)d'] [ -t - ,  (14, 

with Q =  ( 1 / 2 l )  f-~lQ(s)ds. 

Ai- c° 
.'+'-viAl / 

I / I "\ I 
Vl I \k / 

V2 ' - -  \\ 

. . . .  

- o - I - - - -  b - - - I  "",.\./I = 
' I  A2 -~o iA3 A 

\ 
\I 

v 3 x 
\ 
\ 

Fig. 1. F6ppI approximation: the functions F(A) and V(A) for c o < 0 (8 < 0), Problem H. 
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Equations (13) and (14) represent the solutions of Problems S and H for an arbitrary 
vertical load P(~) .  In Problem S, we have T =  To(+l  ). In Problem H, U ( - I ) =  - N  
implies U 0 = - N ,  while U ( l ) =  N is satisfied, if T is determined again from a cubic 
equation: 

- 1 ,-t 
Q = - ~ L Q 2 ( s ) d s .  (15) 

From the Schwarz inequality it follows that Q 2  _ ~ 2 / 2  l = : K 2 is nonnegative, hence (15) 
can be written in the form A ( c o + A )  2= IEK 2, with c 0 and A as defined in (10). 
Consequently, we have 

Theorem 4. For variable load P(~), piece-wise continuous for - 1 ~< ~ ~< l, Theorems 1 and 
2 remain valid: there is a unique solution of Problem S for T o * 0; there is a unique tensile 
solution of Problem H for c o >/0 and c o < 0. In addition, two (or one) compressive 
solutions exist if and only if c o < 0 and 1801 >/(9/8) 1/3, where 80: = ( N / I ) ( 6 1 K 2 / E Z )  - 1/3. 

The compressive solutions are again unstable by the Legendre condition. Calculating 
W' from (13) and observing that P ( ~ ) =  P ( -  ~) implies, upon interchanging the order of 
integration, 

f '  O( , )d,  = 2lfo'e(,)d,, 

one finds T W '  = - Q(~) + Q(0), and with a similar calculation for U(~), one has again 
the symmetry property (12) of Problem H for variable load in the case P(~)  = P ( - ~ ) .  

Remark. Integration of (7) from - l to + l, substitution into (8), and using U( + 1) = + N, 
yields a nonlinear differential equation for W(~), 

( Co + c, - v ,  c o = N E / I ,  c 1 = E /41 ,  (16) 

from which the solution (9), Problem H, was derived in [1]. 

4. Exact theory of elastic strings under a vertical load 

In the exact nonlinear theory of strings, the displacements U, W are not restricted in 
magnitude and the stress T is related to the strain e by an arbitrary constitutive equation 
T = f ( e ) .  Replacing the F6ppl approximation by the exact relation c - U' + (U '2 + W'2) /2  
in (3), 8V-- 0 yields the Euler equations 

2U' + W '2 "1"- 3U '2 + U '3 + U ' W  '2 = constant, 

E ( 2 U ' W '  + W '3 + U'2W')  ' + 2 P  = O, 

which are considerably more complex than Eqs. (7) and (8), and are not a suitable set of 
equations, even for a linear-elastic material. 
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Let S(e)  be an elastic potential such that T =  d S / d e  = f ( e )  (S = Ee2/2 for a linear 
material). Following [2,3], we here use the strain measure 

e = ((1 + U'(~))  2 + W'(~) 2 - 1 (17) 

where ~ is again the arc length of the undeformed string. The potential energy is now 

V = ~  S ( e ) d ~ - ~ P W d ~ .  (18) 

Introduce the new variables 

x = f / l ,  u = U/l ,  w = W/ l ,  p = Pl, (19) 

and let 0 be the angle between the tangent of the deformed string and the horizontal, then 
the compatibility relations are 

1 + u'(x) w'(x) 
, sin 0 (20) c o s 0 =  l + e  l + e  

From Eqs. (17)-(19) we obtain 

e = ~(1 + u') 2 + (w')  2 - 1, V= V / I =  L+11( S( e ) - p w ) d x .  (21) 

Henceforth, the prime denotes differentiation with respect to x. The equilibrium equations 
follow from 8V[u, w] = 0. Using the relation 

8e ~e sw , 8e = 8u---7~u ' + ~w' = cos O~u' + sin O~w', (22) 

we find, upon integration by parts, 

( T c o s  0) '  = 0, (T  sin 0) '  = - p ,  (23) 

which can also be derived directly, as in [3]. 
The solution for a uniform loadp can be shown to be symmetric, that is, u(0) = w'(0) = 0. 

This solution, satisfying Eqs. (20) and (23)p = const, and w(+ 1) = 0, was given in [1]: 

T 2 = B 2 +p2x2,  cos 0 B 

~B 2 +p2x2 

: x l + e  
u = - x + B Jo -~(-~ d s , 

w = f l  l + e  . --T-~ Spds. (24) 

A solution of Problem S is obtained, if the constant of integration B is determined from 
T ( +  1)= To, while Eqs. (24) represents a solution of Problem H, u (+  1)= + v, provided B 
can be determined from the nonlinear equation 

r l l + e  , 
p+ I = B  lao - - - ~ c l s =  : I ( B , p ) .  (25) 
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For the first problem, we have immediately from (24) and B = + (T2(1 )_p2)1 /2  (choice 
of the negative sign will not affect T and w, while u÷ and u_ yield the same deformed 
shape of the string, because of u÷ + u_ = - 2 x ,  hence it suffices to take B >/0): 

T h e o r e m  5. Let IT0l >~P, with a constant vertical load p, then problem S has a unique 
solution, which is tensile (compressive) for T O > 0(T 0 < 0). If  IT01 < p ,  Problem S has no 
solution. The same holds true for a variable loadp(x), if p is replaced by lfolp(s)dsl . The 
solution is given by (24), with px replaced by f~p(s)ds in the case of a variable load. 

Remark. The second part  of the theorem actually refers to a symmetric variable load 
p ( - x )  = p ( x ) ,  implying u(0)=  w ' (0)=  0. But the results can be generalized to arbitrary 
loads p(x) similarly as in the F6ppl approximation, Eqs. (13) and (14). 

The existence and multiplicity of solutions of Problem H was investigated by Dickey [1] 
for constant p, if T=f(e )  satisfies the following conditions: ( i ) f ( e )  is defined for 
- 1 ~< e _ <  e < e ÷ <  ~ ,  (ii) f (0)  = 0, (iii) 0 < i f ( e )  < oo. These conditions imply the ex- 
istence of a unique inverse function e = g(T) defined for T_ < T < T+ with the properties 
g(O) = O, g'(T)> O, g(T)> - 1 and lime~e±f(e ) = T±. The results of [1] are summarized 
in 

Theorem 6. Suppose f ( e )  satisfies (i)-(iii), with e_ = - 1, e+ = T+ = ~ ,  T_ = - oo, and p 
is constant. Then there exists a unique tensile solution of Problem H for all p, - 1 < 1, < o0. 
There are no compressive solutions for p >/0. If p is sufficiently small and - 1 < ~ < 0, 
there exist at least two compressive solutions. If p is sufficiently large and - 1 < v < 0, 
there are no compressive solutions. 

Differentiating I(B, p) defined in (25) twice with respect to B, we obtain 

a2I(B'P)aB 2 fol B--~ [3p2s 2 ( g'(T)-----~)l + g + TB2g,,(T)]ds" 

If  T <  0, one has B < 0, and from f"(e)= -(f'(e))3g"(T)>1 0 it follows that g"(T)<~ 0, 
and therefore ~21/aB2 < 0. Thus the conclusions in [1] can be strengthened to yield the 

Corollary. In addition to the assumptions on f(e) in Theorem 6, let f(e) be convex 
f"(e)>~ O, e.g. f (e)=Ee,  then there exist exactly two compressive solutions, if p is 
sufficiently small and - 1 < p < 0 .  

Note the remarkable similarity of the results of Theorems 2 and 6. By means of the 
Legendre condition, the instability of solutions with T < 0 can also be established: 

Theorem 7. Let f ' ( e )  > 0, then all compressive solutions described by (24) for Problems S 
and H with constant or variable load p(x) are unstable. 

Proof. As in Section 3, we calculate the discriminant 

2 D: = F,~,~,F,,~,w,- F,~,~, for F= S(e) - p ( x ) w ( x )  
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in accordance with (20)-(22). We first obtain 

, ] 
F'"'"'=-i--+~e ~ l + e  ] ( f ' ( e ) ( l + e ) - f ( e ) ) + f ( e )  

and two similar expressions for F, w,~, and F, Cw'. Substituting these into D, we obtain 
after some algebra, 

1 
e t D T T - T f  ( ) f  ( e ) ,  that is, D < 0 iff i f '  = Tf' < O, 

completing the proof. The significance of condition (iii) on f (e)  as a material stability 
condition is recognized. 

In the special case T = f (e)  = Ee, p constant, the integrations in (24) can be carried out, 
resulting in the closed form exact solution, for positive T, 

(26) 

with B = + ~ o  2 - p 2  for Problem S, and B determined from (25) for Problem H. 

It is now of interest to compare the solutions of the exact theory with the Frppl  
approximation for a linear material T = Ee. In particular, we ask in which range of p does 
the Frppl  solution represent a satisfactory approximation to the exact solution (26). For 
v = O(1) we have B = O(T) from (25). Expanding (26) with respect to p/B,  we find, 
setting b = B / E  

p2 p 4 
u x) - 

= _ x 3 6B 2 + 

, 

= + x 2 2B 2 + . 

(27) 

(28) 

(29) 

In the elastic range T / E  << 1, whence b << 1. According to (29), the constant B approxi- 
mates T with an error O(p2/B2), while (27) and (28) imply, setting To = T(0)= B, 

x3p___~26To 2 (p___~4 4 p (_.~o3 ) u ( x ) = e x -  + 0  , w ( x ) = ( 1 - x 2 ) - ~ o + O  . (30) 

Expanding (17), one has e = u' + (w')2/2 = c. We conclude that the leading terms of the 
exact solution (30) coincide with the FOppl solution (9), which can be written, upon the 
change of variables (19), as 

I [ P ~  2 3 u ( x ) = , x - ~ T ]  x ,  w ( x ) = 2 - ~ ( 1 - x 2 ) .  (9b) 
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t(B.~) 1.0 
0.8 
0.6 
0.4 
0,2 

B 0 -1.0 -0.8 -0.6 -O.Z. -0.2 0 
Fig. 2. Exact compress ive  solut ions unde r  vertical load: the funct ion  I ( B , # )  for B < 0, f ( e )  = Ee,  Problem H. 

Furthermore, quantitative estimates for the error, when the solution (26) is approximated 
by (9b), are provided by the expansions (27)-(29). In particular, if the constant T (F6ppl) 
is replaced by T=  B(1 + x2p2//2B2), then this modified F6ppl approximation is accurate 
up to terms of O(pa/T 3) in w(x), and up to terms of order O(p4/T 4) in u(x) and 
T(x)/B. In view of the assumption lul << Iwl, the above comparison is valid only for 
sufficiently small values of Ivl, especially in the range T < 0. 

For the case of a linear material f(e)= Ee, the qualitative statement "p is sufficiently 
small (large)" in the second part of Theorem 6 can be made more precise by calculating 
the maxima of I(B, p), B < 0 for a set of values p, see Fig. 2. For every p, - 1 < p < 0,  
there is a unique pc(v) such that two compressive solutions exist for all p <pc(v). The 
graph of pc(v)/E is shown in Fig. 3, together with the corresponding graph from the 
F6ppl approximation pc(v)/E = 8 ~ f ~ l l , [  3 /2 ,  which follows from 16l = ( 9 / 8 )  1/3 (Theorem 
2). 

\\\\ \\\\\~v)/E (exact) 

Irn°= x_lpc(vl/E: (F6ppl)Xxx\xx\\\\".~: Pll)Xxi~ ~ 

-1.0 -0.8 -0.6 -0.4 -0.2 

I 1.0 0.8 
0.6 
0.4 
0.2 
0 

Fig. 3. Limi t ing  load #c(p):  region of compress ive  solut ions  ,5 < fie(v), - 1 < i, < 0, exact  theory ( ) and  
FOppl approx imat ion  ( . . . . . .  ). 



159 

Conclusion.  The (u, p)-region of existence of compressive solutions, i.e. p <pc(u), in the 
exact theory with f ( e )= Ee is larger than in the Frppl  theory, both regions are given in 
Fig. 3. 

Remark. An example of a simple elastically nonlinear material, for which the integrations 
(24) can be carried out or reduced to standard elliptic integrals, is given in the Appendix. 

It remains to discuss Problem H for a variable load p(x) and without the restriction 
e _ =  1, e+= o¢, T_+= + o¢. In [2], Dickey has proved existence and multiplicity results, 
analogous to Theorem 6, under the assumption 

fo I 1 x ~ d x <  oo, i f ( x ) :  =fo  p(x)dx .  (31) 

However, this assumption excludes practically all physically realistic loads such as p(x) 
regular at x = 0, implying i f (x)  = O(x) for x ~ 0, so that [1/p(x)[ is not integrable. In 
order that (31) be satisfied, p(x)  has to be singular at x = 0. We therefore replace (31) by 
the following assumption 

(i) p(x) piece-wise continuous for 0 ~ x ~ 1, 
(ii) there exist constants k > 0, fl > 0 and a >/1 such that IP(x)l >/kx ~ for 0 ~< x ~< ~ ~flt.31aj 

The solution of Problem H for nonuniform p ( x ) = p  ( -  x) is again given by Eqs. (24) and 
(25) except that T 2 = B 2 + ,6(x)  2 and that sp is replaced by p ( s )  in the integral for w(x). 
The uniqueness of tensile solutions follows from OI(B, p)/OB > 0 as before, independent 
of condition (31). The existence of solutions can be proved under the assumption (31 a), by 
suitably modifying the proofs of some of the lemmas in [2]. We summarize the results (see 
[111): 

Theorem 8. Let p ( x ) = p ( - x )  satisfy (31a). If T+= 09, then a unique tensile solution of 
Problem H exists for all r satisfying 0 < 1, + 1 < 1 + e+. If T+< o9 and maxl/~(x)l = :PM 
< T+, then a unique tensile solution exists for all ~ satisfying 0 < 1, + 1 < I ÷, where 

I+= lim I( B, p) as B ~ B + :  [~2 -2 kl/2 
= ~ J + - - P M )  • 

Moreover, the deformed string (x + u(x),  w(x)) is always convex (downward). 

Theorem 9. Let p ( x ) = p ( - x )  satisfy (31a). Problem H has no compressive solutions if 
~, >~ O. If fig is sufficiently small, then at least one compressive solution exists for all r with 
- 1 < r < 0; in the case T+ = e+= oo, e_ =  - 1, at least two compressive solutions exist, 
and if, in addition, f"(e)  >i O, exactly two compressive solutions exist. On the other hand, 
i f /~g is sufficiently large, no compressive solutions exist with 1 < 1, < 0. The deformed 
string is always concave (upward). 

5. The elastic string under normal load 

In this section solutions of the exact nonlinear equations of elastic strings under a 
constant normal load are obtained, and their multiplicity is discussed. The basic equations 
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(17) and (20) relating u, w, 0 and e, as well as T = f (e )  remain the same. Let Po be the 
force per unit deformed length divided by the cross sectional area of the string, and 
directed perpendicular to the deformed string, then we have the equilibrium equations 
( Tc os  0)s = Po sin 0, (Ts in  0)s = - P 0  cos 0, s = arc length of the deformed string, or, in 
terms of the variables (19), with ds = (1 + e)ldx, p = Po l, 

(TcosO) '=p(1  + e )  sin0,  (Ts in  0) '  = - p ( 1  + e )  cos 0. (32a,b) 

As the work done by the load is here pw(1 + ux)ldx, the potential energy is now, as in 
(21) with d S / d e  = f ( e ) ,  

v =  f+l'( S( e ) -pw(1 + u ' ) )dx .  (33) 

Using (22), 8V[u, w] = 0 yields the Euler equations (32). 
The solution of (32) can be obtained in closed form. Carrying out the differentiations 

(T  cos 0)' and (T  sin 0)' in (32), multiplying (32a) by sin 0, (32b) by cos 0, and adding the 
resulting equations, we obtain 

TO' = T dO = dx -p( l+e) .  (34) 

Substituting (34) into (32), one finds T' cos 0 = T' sin 0 = 0, hence T= T O =f (e0) .  Stress 
and strain are constant in elastic strings under normal pressure. 

Equation (34) can now be integrated. Since the boundary conditions given below imply 
the symmetry conditions u(0)= w'(0)= 0 ' (0)= 0, we obtain 0 ( x ) =  -Box,  so that Eqs. 
(20) can be integrated with respect to x. Hence the solution of Eqs. (20) and (32) and 
w( + I) = 0 is given by 

p(1 + eo) 
T =  T 0 = / ( e 0 ) ,  0 =  -Box ,  B o= f(eo ) , (35a) 

u = - x  + C O sin Box, w=Co(cOSBoX-COSBo), C o = ~ f ( e o ) .  (35b) 

The constant T O (or e0) is determined from the boundary conditions T ( + I ) =  T O in 
Problem S or u (+  1)= +i, in Problem H. In the first case we have 

Theorem 10. Problem S for normal load has a unique solution for all values T(1) = T O * 0, 
it is given by Eqs. (35) with e 0 = g(To)=f-l(T0). The solutions for T O < 0 are unstable. 

Problem H has a solution if and only if e o satisfies u(1) = p, that is, e o is a solution of 
the equation 

= p sin ( l + e 0 )  = l + u  (36) 

where P: = p / E  and F(e) :  = f ( e ) / E  are scaled by E: = f ' ( 0 ) >  0, implying F(e) /e  ~ 1 as 
e ~ 0, and P < 1 for any physically realistic material. It is seen that the solvability of (36) 
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Fig. 4a. Normal load p, conservative: the function J(e0, p) = (eo/P) sin(fie o l(1 + %)) for p = 1. 

Fig. 4b. Normal load p, conservative: the function J(e0, #), as in Fig. 4a for # = 0.1. 

depends  on  the p roper t i e s  of  F ( e ) ,  where f ( e )  is assumed to sat isfy condi t ions  ( i ) - ( i i i )  of  
Sect ion 4. There  is a var ie ty  of  poss ib le  cases, e.g. if T+ is f inite and  if IF(e)/PI < 1 + v, 
Prob lem H has  no  solut ions at  all. On  the other  hand,  Eq. (36) has inf in i te ly  m a n y  

solut ions  eo ~"), with l i m , ~  ooe~0 ") = + oo, for any  given P > 0 and p > - 1, if bo th  F(e)  and  
(1 + e ) / F ( e )  a p p r o a c h  inf in i ty  wi th  e ~ oo. In  phys ica l  terms,  s i tua t ions  like these usual ly  

co r re spond  to prohib i t ive ly  large p ,  I, o r  e, while the ra te  of  increase  o f f ( e ) ,  as e ~ oo, is 
too  low. However ,  for  a wide class of  funct ions  f ( e ) ,  we now turn to show that  Eq. (36) 
impl ies  results  s imilar  to those i l lus t ra ted  in Fig. 4 for  a l inear  mate r ia l  f ( e ) =  Ee. 
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Assuming e+ = oo, define q~ and c by 

l + e  
F(e)  = e(1 + q~(e)), c(e)  = 1 + 4~(e) > 0 for e > 0 

where q~(0) = 0. For  e > 0, we consider the following two cases. 
(i) c(e) remains bounded  for all e > 0, that  is, 0 < c(e)< c I. From (36), J(e, P )=  

(e/P)(1 + q~(e)) sin (Pc(e)/e) .  As c(e) /e  ~ 0 with e ~ oe, we get, for sufficiently large e 

e [ P  ] 
J ( e , P ) - - - - t ~ ( l + ~ ( e ) )  c ( e ) + O ( e  -3) = l + e + r ( e ) .  (37) 

The leading term is 1 + e, hence lime~ooJ(e, P ) =  oo. Since lime~oJ(e, P ) =  0, the 
equation J(e, P ) =  1 + u has at least one positive solution e 0 for any given ~,, P with 
~, > - 1 ,  P > 0. Moreover,  in view of  (37), the solution e 0 of (36) is unique if u is 
sufficiently large. 

(ii) c(e) is unbounded,  but  lime~ooc(e)/e= c 2 <~ ~r. In  this case we have, for suffi- 
ciently large e 

e 1 + e s i n ( P c  2 + 8 ( e ) ) ,  8 ( e )  ~ 0 J ( e , P )  P c (e )  with e ~ oo. 

For  P < 1, sin Pc 2 > 0 for all e sufficiently large, hence we have 

lira J( e, P)  sin Pc 2 
e--*oo 1 + e Pc 2 ' 

and we conclude as in case (ii), that Eq. (36) has at least one positive solution for any 
given u, P with p > - 1, 0 < P < 1. The solution is also unique for p sufficiently large. 

Case (i) includes any functions ~ with ~ (e )  = O ( e ' )  for e ~ oo, n >~ 1, case (ii) includes 
the linear material ~ = 0 or any function q~ bounded  for large e, e.g. q~(e)= (1 + e2) -1. If  
q~(e)>~ 0, one has c 2 ~< 1. Qualitatively similar results hold also for other cases, with 
suitable modifications, e.g. if e+ < oo the range of  u must  obviously be restricted for (36) to 
have solutions (as in Theorem 8). 

The solutions of Eq. (36) for small [e I behave like the solutions of the equation 
x s i n ( l / x )  = 1 + 1,, for any admissible q,(e), where F(e ) / e  ~ 1 with e ~ 0 has been used. 
This means that the graph of J(e, P), P fixed, may  intersect the line 1 + p several times if 
p is sufficiently close to - 1. 

In the range e_ < e < 0, we consider the particular case e_ = - 1 for which J = 0 and 
8J/Se = 1 at e = - 1. As J returns to zero at e = 0, J must  have at least one positive 
maximum in the interval ( -  1, 0). Let JM(P) :  = max J(e, P), e in ( -  1, 0), then Eq. (36) 
has no solution e 0 < 0 for 1 + u > JM(P), but  at least two or one negative solutions, if 
1 + u < JM(P) or 1 + v = JM(P), respectively. If  P increases, JM(P) decreases, and vice- 
versa, that is, the larger P is, the smaller ~, must  be if negative solutions of  (36) are to exist. 
Similar results hold for e > - 1. 

We summarize the main results in the following theorem, without  repeating the 
restrictions imposed on F(e) in cases (i) and (ii). 

Theorem 11. Consider Problem H for normal  load P > 0. There is a P0 > 0 such that at 
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least one tensile solution exists for P < P0 and - 1 < v < ~o, v0 -- oo in cases (i) and (ii). 
The solution is unique for P < Pi ~< P0 if p > p~ = p1(P). If  p is sufficiently small, there 
exists more than one tensile solution, the number  of  solutions increases without  limit as v 
approaches  - 1. 

For  given P,  there exist at least two compressive solutions for - 1 < p < Pc = vc(P), the 
number  of  solutions increases without  limit as ~ approaches - 1. The number  vc decreases 
with increasing P. The solutions of Problem H, if they exist, are given by Eqs. (35), where 
e o is a solution of  Eq. (36). The compressive solutions are unstable. 

It is emphasized again, that  Theorem 11 holds under  certain assumptions on f (e ) ,  
somewhat  more  general than the ones considered above, but that  part  or all of  Theorem 
11 does not  necessarily hold for some functions f ( e )  with totally different properties. 

It remains to show the instability of compressive solutions. The calculation of  the 
discriminant D for F =  S ( e ) - p w ( 1  + ux) is the same as in the proof  of  Theorem 7, the 
result is again D = f ( e ) f ' ( e ) / ( 1  + e) < 0 for T = f ( e )  < 0, i.e. solutions with e o < 0 are 
unstable. 

The content  of  Theorems 10 and 11 is to be compared  with that of  Theorems 5 and 6 
for vertical load. In  particular, we note the non-uniqueness  of  tensile solutions for normal 
load. In  fact, we have an arbitrarily large number  of  both  tensile and compressive 
solutions, if p is sufficiently close to - 1. This kind of  multiplicity was found previously in 
[5] for compressive solutions of  a circular elastic membrane  under  a vertical load for the 
two types of  edge support  corresponding to our  problems S and H. There are also regions 
in the (p, P ) -p lane  where exactly one tensile and two compressive solutions exist, as in the 
case of  a vertical load. 

A consequence of  (35b) is wor th  noting. In  both problems S and H we have for the 
deformed posit ion of  the string (X, Y) = (x + u, w) 

X2 + ( Y +  Yo) 2 = Co 2 = (To/p) 2, Yo: = Co cos B o. 

Theorem 12. An  elastic string under  a uniform load always deforms into a circular arc, for 
any constitutive law T = f ( e ) .  The radius of  the circle is R = ITol/P, its center is (0, Y0), 
Co > 0( < 0) for tensile (compressive) solutions, but  cos B o < 0 for sufficiently small e 0. 

The statements in Theorem 11 can be made  more explicit for the case T = f ( e )  = Ee, 
assuming P < ~r. Eq. (36) then simplifies to 

eo ( 
J(e  o, P )  = ~ -  sin 1 + e0) = 1 + p. (38) 

The  following statements are easily verified. The function J(e, P), with P fixed, oscillates 
between the pair of  straight lines with slopes + P - 1  (see Fig. 4). The zeros of  J in the 
range e > - 1 are located at e = e, = P/(nqr - P )  > 0 and at e -- e_ n = P / ( P  - ~rn) < O, 
n = 1, 2 . . . .  The extrema of  J are located at ek = P / ( z k  - P)  where z k are solutions of  
tan z = z - P,  which are approximately given by Sk = (2k + 1)~r/2, k = + 1, + 2  . . . . .  the 
error for positive k is 8 k = zk - zk > 0 with 8/,+ 1 < 8 k, ~l ~< 5 • 10 .2  for P ~< 1. The maxima 
J~.k (minima J~. , )  in the range e > 0 correspond to k positive and even (odd), they are 
given by 

jflt.k(p)± _ sin z k cos z k = + 1 (39) 
( z k -  P )  ~l  + (z  k -  p )2  
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Thus  J~,k > 0 and Jff , ,  < 0, the J ~ , ,  fo rm a mono tone  decreasing null sequence. As 
J(e, P) is mono tone  increasing for e > /P / (~r  - P )  = e I = maximal  zero of J ,  it follows 
f rom (39) that  (38) has a unique positive solution e 0, if 1 + p > J~ .2 (P) .  It  has exactly 
three positive solutions if J~t,4 < 1 + p < J ~ , 2  and so forth. A rough est imate yields 
J~t,2 < 1/5.  The  largest m a x i m u m  in the range e < 0 is also obta ined  f rom (39), by  setting 
k = - 1 and taking the positive sign. Note  that  z_ 1 deviates f rom $_ t = - ~r/2 for small 
P,  while z k - ~ k  > 0 is small again for  k = - 2 ,  - 3  . . . .  We summar ize  these results in 
Theorem 13, replacing some qualitative s ta tements  of  Theorem 11 by  explicit estimates.  

Theorem 13. Let  f ( e ) =  Ee and P < ~r. Then  Problem H has a unique tensile solution for 
p > - 4 / 5 ,  it has exactly k = 2m + 1, m = 1, 2 . . . .  tensile solutions if P and p satisfy 
J ~ , , + l  < 1 + 1, < J ~ . k -  1, where k ~ oo with I, ~ - 1. There  are no compressive solutions if 
p > - 1  + J+ , - l ,  and there exist precisely k = 2m,  m = 1, 2 . . . .  compress ive  solutions for 
P,  p satisfying J~ ,_ ,  + 1 > 1 + ~, > J~t.- k -  1 where k ~ oo with p ~ - 1. 

The numbers  J~t,±, are given by  (39), the solutions are given by  Eqs. (35), where e 0 is a 
solution of (38). 

No te  that  limp_, ooJ~t,±, = 0 implies that  no compressive solutions exist for  a given ~,, if 
P is sufficiently large. 

The  question m a y  be raised, which one of several tensile solutions will be  a preferred 
state of equilibrium, for given P and u. Substi tut ing the solution (35) into (33), the 
potent ia l  energy is 

V(eo)=2S(eo ) - f ( eo ) (1  + C o ) ( 1 - ~ B  ° sin 2B0) .  

Fo r  solutions of  Problem H, we get, upon  inserting (36), 

E - ' V ( e o )  = S , ( e o )  + (1 + ~,)[ F ( e o )  2 -  P2(1 + 1,)] I/z, 

S l ( e ) :  = 2e - iS ( e )  - (1 + e)F(e) .  

Clearly S ~ ( e ) =  F ( e ) - ( 1  + e)F'(e), S ~ ( 0 ) - - -  1. For  a wide class of  functions F(e), 
S~(e) < 0 at least in the range of e where mult iple tensile solutions occur. Moreover ,  the 
t e rm - F ( e )  in S 1 will in general make  - F +  (1 + p ) [F  2 -  PZ(1 + p)]l/2 negative, there- 
fore V(eo)< V(e~) for e 0 > e~ > 0, e 0 and e~ being two solutions of (36) for the same 
values of  p and P. In the special c a s e f ( e )  = Ee, this can be verified explicitly f rom 

E-lV(eo) = --e o + (1 + l , ) [e  2 -  p2(1  + I,)] 1/2, 

as 1 + p < 1 in the range of mult iple tensile solutions. We conclude that, if Problem H has 
several tensile solutions for given p, P, then the one with the largest strain e o has the lowest 
potential energy. 

Next  a different normal  load p rob lem is briefly discussed. If  p is the force per  unit  
undeformed length, as in Section 4, but  directed perpendicular  to the deformed  string, one 
has  the equil ibrium equations,  

( T  cos 0 ) '  = p sin 0, ( T  sin 0 ) '  = - p  cos 0. (40) 
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This is a type of follower-force problem which is apparently non-conservative, having no 
potential V similar to (33), with Eqs. (40) as Euler equations of 8V = 0. Similar calcula- 
tions lead again to TO' = - p  and T =  T O = f ( e 0 ) ,  a constant stress. Hence the solution is 
given by (35), except that Bo=p/f(eo) and C0=(1  +eo)f(eo)/p, resulting in the 
following equation replacing (36); 

p e O  F( eo P J(eo, P ) l _  sin F(eo-----~=l+v" (41) 

Thus Theorems 10 and 11 are valid, except for different constants P0, P1, V0, g| and v C and 
without the statement concerning the instability of compressive solutions. Theorem 12 
remains true, for the new constants B0, C O defined above. The arguments leading to 
Theorem 13 have to be slightly modified. J(e, P) now oscillates between the pair of 
parabolas y ( e ) =  +(1 + e)e/P (see Fig. 5). The behavior of J for small e is the same as 
before, the values of J~,k differ but little from those given by (39). Hence Theorem 13 
remains essentially valid. 

6. Kinetic stability of the F6ppl solution 

The energy method is based on the observation that the transition from stability to 
instability is determined by the fact that the potential energy V ceases to be positive 
definite. This approach is restricted to conservative problems. It  is not known, whether 
this static method generally yields the same results as the kinetic method for elastic 
continua, although it does so in many special cases. In the kinetic method, whose 
applicability is not restricted to conservative problems, the motion of a body in the 
vicinity of the equilibrium is investigated: A static solution is considered unstable, if the 
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general free motion of the body in the vicinity of the static solution is not bounded, 
otherwise the solution is called stable (problems of hydrodynamic stability are generally 
investigated by this method). 

The general approach in what follows is to start from the equations of motion of the 
string, and to consider solutions of the type us(x ) + ~(x, t), ws(x ) + ~(x,  t), where u s, w s 
stands for the static solutions under vertical or normal load given in the preceding 
sections. In accordance with the kinetic method, the equations of motion are linearized 
with respect to u, w and motions of the type fi = u(x)e  "~t, ~ = w(x)e  i°~t are investigated, 
from which the general free motion is obtained by superposition. The boundary conditions 
determine a set of frequencies o~. If o~ > 0 for all i, u, w are bounded for all t. If ~02 < 0 
for some i, u, w may increase exponentially with t ~ oe. Hence we employ a principle of 
linear stability. 

Adding the inertia term 0W, to Eq. (16) of the F/Sppl approximation, where W t = 3W/St ,  
p = linear material density of the string, assumed to be constant, we obtain the equation of 
motion 

(Co+C,g~tW~(f ,  t )2df)  W~ + P =  OW,. (42) 

This is a special case of the nonlinear beam equation, for P = 0, 

( B + Y fotu~( IL t )Z d(  )uxx - aU . . . .  = u . + 3 u , ,  a , B , y ,  8 > 0 ,  

studied by Ball [12] as an approximate model of the transverse motion of an elastic beam 
with fixed ends. Setting in (42) W = W~(~) + W(~, t) yields, upon linearization in W and 
cancelling terms satisfying (16), 

2¢,~"(~)f_t <(~)<(~, t)dS+ r< ,  = pW.. (43) 

Calculating W', W" from (9), we obtain upon integrating by parts and using W(I, t )= 
w(-t ,  t)=0, 

and ,a"+ a2~=/~ff W(~)d~ (44) 

where W--(~, t ) =  l)¢'(~)e ~'°t, /~= 2Cl (P/T)  2, f l=P2/ (21T2)> O, and f~2= po~2/E. The 
homogeneous equation (44) for 1~(~) together with 1 ~ ( + / ) =  0 represents a (non-stan- 
dard) eigenvalue problem. Setting 

( a / , ) £  = a,, (45) 

we distinguish two cases. 
(i) b2: = f~2/c > 0. The solution is i f ' =  C sin b~ + D cos b~ + f l l /b 2. Imposing l ~ ( + l )  

= 0, we have either (ia) C = 0 ,  i.e. b l*  nrt, D = - f l J ( b  2 cos bl), or (ib) sin bl=O, i.e. 
bl = n~, D = ( -  1)"+lfll/b2, C ~ O. 

The equation for the determination of the eigenvalues is now obtained by substituting 
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l)g into (45). In  the subcase (ia) we find 

1 
tan X =  1 - m l  x 2 ,  X =/(~-~,2/c)1/2 > 0, ml: = ~ ( T / P I )  2 = (8 + A-) /6A_ 

(46) 

Equat ion (46) has an infinite number  of  solutions X m > 0, with X~ - (m - 1/2)rr,  for 
m ~ oo. The eigenfunctions are 

Wm( ) = COS X, ,  -- CoS( Xm /t) = (47) 

In  the subcase (ib), the condit ion b2c = 2l f l= ( P / T )  2 is obtained f rom (45). Since 
b z = ( n ~ / l )  2, (ib) yields one eigenvalue if and only if P and T o (or v) satisfy ( P / T )  2 = 
TnZ'rrZ/(El2), or equivalently mln2'n "2 = 1 for some integer n. In Problem S, T = T 0, while 
T is determined f rom Eq. (10) in Problem H. The eigenfunctions for this eigenvalue are 

l)g(~) = C l [1 - ( - 1 ) "  cos(nr:~/l)]  + C 2 s in(n~'~/ l ) ,  (48) 

with C1, C2 arbitrary constants.  Thus ~ =  f~2c-1 =(n~r / l )  2 is a double eigenvalue. If  
C z ~ 0, 1~'(0) ~ 0, that is, 1~" is in general unsymmetric.  

(ii) ~22/c < 0, b: = ( -  f~2/c)1/2. The solution is l)g = C sinh b~ + D cosh b~ - f l J b  2. 
Imposing  l)V(_+l)= 0, we have C = 0, D = f l l / ( b  z cosh bl). A similar calculation as in 
case (i) yields 

1 
-~ tanh Y =  1 + m l  Y2, Y = l ( - f ~ z / , )  1/2, m, = (8 + A - ) / 6 A _  (49) 

Equat ion (49) has no solution if m I >~ 0, or  if m 1 ~< - 1/3,  it has exactly one positive 
solution Y0 if - 1 / 3  < rn 1 < 0, as will be shown below. In the latter case, there is a 
symmetr ic  eigenfunction 

1~0 (~) = cosh Yo - cosh( Yo~/ l )  = l;Vo(- ~ ). (50) 

For  tensile solutions T > 0, we have m 1 > 0. Case (i) yields an infinite sequence 2 _ 
c ( X m / l )  2 > 0, with lim 2 _ = f~,~- ~ ,  and one addit ional eigenvalue f~2= ~(nTr/l)2 if rn l 
(nor) -2, n integral. Case (ii) yields no solution. Thus all frequencies ~o m are real positive. 
For  compressive solutions T <  0, we have rn I < 0. Case (i) now yields a sequence 
~ = c(X, , , / l )  2 < 0, with lim f~2 = _ oo. Case (ii) yields one solution f~2 = _ ~ ( y / l ) 2  > 0 
if - 1 /3  < ml < 0, or no solution if m I ~< - 1 /3 :  As f~2 < 0 implies o: m = ++_ilO:m[, admit-  
ting solutions l)V(~) exp(lto,,lt ) ~ ~ with t ~ oo, we conclude kinematic instability. We 
summarize the results in 

Theorem 14. On  the basis of  Eq. (42), the static solutions of the F6ppl  approximat ion for 
uni form load given in Section 3, are kinematically stable if T is positive, they are 
kinematically unstable if T is negative. 

It  remains to discuss the solvability of  Eq. (49). Obviously, there is no  solution Y > 0 if 
m 1 >~ 0. For  m 1 < 0, Eq. (49) has no solution if and only if 1 + ml Y2 < (tanh Y ) / Y  for all 
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Y > 0. From the series expansion of tanh x we have 

1 
tanh x = 

X 

X 2 
(-1)n-lCnx2n-2= l --~-÷ (C3-  C4x2)x4 ÷ (C5-C6x2)x8 .4. ... 

n=l 

(51) 

where C. = 22n(22n- 1)B2._ J ( 2 n ) ! ,  B2n_ 1 being the Bernoulli numbers 1/6, 1/30, etc. 
From the classical formula 

1 1 ) 
C n=2  1 + - ~  + ~-~'÷ .. .  

it follows that Cn+lx2/Cn < X2(2/qr)2 ~ 1, so that all terms in parentheses on the right 
hand side of (51) are nonnegative for x ~< ~r/2. Therefore, 

1 1 -~ tanh Y>~ l - ½ y 2 >  l +ml Y2, if m l <  - 3 ,  

which actually holds for all Y> 0. On the other hand, if m I > - 1/3, the derivative of 
( l / Y )  tanh Ynear  Y=  0 will be less than 2mlY, so the parabola 1 .4- relY 2 must intersect 
( l / Y )  tanh Y once (the value m 1 = - 1/3 in Problem H implies 8 + 3A-= 0, which also 
results from d[A(8 + A~2]/dA ---- 0, hence m I = - 1/3 corresponds to the maximum of the 
function F(A) in Fig. 1). 

It is worth noting that both the energy criterion and the linear kinetic analysis yield the 
instability of solutions with T < 0. In the latter method, one positive eigenvalue f~2 is 
found if - 1/3 < ~2(pI/E)-2 < 0 in Problem S, and if - 1 /3  < (8 + A-)/6A-< 0 in 
Problem H. The occurrence of one double eigenvalue f12= (n~r/l)2, in addition to the 
standard (Sturm-Liouville) eigenvalues is caused by the integral term in Eq. (44). It was 
only after completion of this work, that the authors became aware of a paper of Liouville 
[13] in 1837 on the solution of a similar integro-differential eigenvalue problem arising 
from thermodynamics. 

In the preceding analysis, based on Eq. (42), a horizontal component of vibration 
0(4,  t) has not been included. Although the F6ppl approximation U << W is retained, 
there is no a priori reason for ignoring U in a kinetic stability analysis, because both U 
and Ware  treated as small quantities, not exc luding/7= O(W). In order to examine the 
influence of U, we proceed to carry out an exact (linear) stability analysis that accounts 
for both components G and W. 

Adding the inertia terms to the static equilibrium equations (5) and (6), we have the 
equations of motion for U = U s + U, W = W~ -4- W 

E(U~ "l- 1 ~2) /~  = pUtt , E(U~W~ ÷ IW~3)~ + P~-pWtt. (52) 

Linearizing, cancelling static terms satisfying (5) and (6) and substituting 0~', U", W', Iv" 
from (9) for constant load P, we obtain, after some rearrangement of terms, 

~ ,  - " 7 ( } ~ ) ,  = ( 0 / E ) ~ , ,  (~/(}) ~ ) ,  - ~ ( } ~ ) ,  = ( 0 / E )  ~ , ,  (53) 
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where q ( f ) =  c + ~2~2 y = P/To" Assuming U ~= U ( f ) e " %  w =  lJ,'(~)e i'°' and passing to 
the dimensionless  variables (19), we obtain  the following eigenvalue p rob lem for f ( x ) :  = 
~(xZ)/l, g(~)= ¢V(xl)/l: 

f,, + X2f_ ),(xg')' = O, (q(x)g') '  + X2g _ y(xf') '  = 0, - 1 ~< x ~< 1, (54) 

where  ?d = pto212/E, ~ =if/c, ff =PI/E,  q(x) = ~ + "y2x2. The bounda ry  condit ions are 

f ' ( -  1) + y g ' ( -  1) = f ' ( 1 )  - yg ' (1 )  = g(  - 1) = g (1)  = 0 

f ( -  1) = / ( l )  = g ( -  1) = g(1)  = 0 

(Problem S), (55a) 

(P rob lem H) .  (55b) 

The  former  condit ions are obta ined  f rom T =  0 by  subst i tut ing W~'(~) into 

, , - -  = ~ +  , - -  7"=7;+T=E(Us+~+½Ws'2+w;w~), T = 0  w;w~, 

the latter are obvious.  A complete  analysis of  this eigenvalue p rob lem has not  been 
achieved as yet. A stability result will be given in Theorem 15 below. 

L e m m a  A. Suppose  c * 0, then the system (54) is regular for  all x, - 1 ~< x ~< 1. 

Proof .  Def ine  v = f ' ,  z = g ' ,  and solve the linear equat ions (54) for v '  = f "  and z ' =  g", 
which is possible since the de te rminant  is q - 3,2x 2 = c :~ 0. The  resulting first order  system 
for  y: = ( f ,  g, v, z)  r, 

(°0) ( 0 00) d /2 B = , (56) 
~xxY - A ( x ) y  = ~.2B(x)y, A = C2 , E2 

with 

(, 0) ,(x 2 , 
1 2  = , c ~  = - . ,  

0 1 c 
,,: ,(q :,) 

c x y  

is equivalent  to (54), the (4, 4)-matrices A and B are ho lomorph  for all x. This can also be 
verified directly f rom (54) by  expanding  the solution f ,  g in series r"Ec, r n for r = x, or 
r = x -  x o, with q(xo)= 0. The  characterist ic equat ion for a then yields a 1 = 0, a 2 = 1, 
and  no terms c log Irl. Hence,  neither x = 0 nor  x = x 0 are singular points  of  (54). 

L e m m a  B. I f  c ~ 0, the eigenvalue p rob lems  (54) and (55) are selfadjoint. There  exists a 
sequence of  real eigenvalues ?~z, having no limit point  except at infinity, and a comple te  
set of  or thogonal  eigenfunctions.  All ~2 are posit ive if c > 0. 

Proof.  In t roduc ing  z = ( f ,  g)r, the system (54) is equivalent  to 

o , :  = - ( D ( x ) , ' ) '  = X : z ,  D ( x ) : = (  1- ' /x q(x)-•x) =D(x)r" (57) 

Let  z and w: = ()~, g)r be twice differentiable,  and let f ,  g and )~, ~ both  satisfy the 
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boundary conditions (55a) or (55b), then the usual integration by parts yields 

= f+_ f+_ ' [ fT'+ = (z, <;>,,,). (58)  

Since det D = q -  ~2X2=, :*: 0, D is invertible for all x, and ¢ is selfadjoint. It follows 
from Lemma A that all solutions of y' - Ay = 0 are holomorph, the same is true for all 
solutions z of the equivalent equation (Dz')' = 0. Therefore, a continuous Green's matrix 
exists so that the eigenvalue problem (54) and (55) is equivalent to z = X2Kz, where K is a 
compact selfadjoint integral operator. The usual proof that such operators have a 
complete set of eigenfunctions with real eigenvalues carries over [7]. For two pairs of 
eigenfunctions (fi, gi), i = l, 2, we have 

_ +gl(x)g2(x)] dx=O' if X2 .  ~2. (59) 

Let z be an eigenfunction, with eigenvalue ~2, then we obtain from (57) and (58) 

X2(z, z ) =  (z, q~z)=f+l i (z ' ) rDz 'dx = :Q(z'). (60) 

The eigenvalues of D(x) are given by 

#1,2 =½(1 + q )_+ l i (1  + q ) 2 _ 4 ,  =½(1 + q)_+½1(1-  q)2 + 4y2x: .  

It follows that/~l,/-L2 > 0 if and only i f ,  > 0. In that case D is positive, the quadratic form 
Q(z') is positive definite implying X2, > 0 for all n. I f ,  < 0, then q + 1 = 1 - I'1 + Y 2x2 > 0, 
since I,I < 1 in the F6ppl approximation, and it follows that/~n > 0, ~t 2 < 0 implying that 
Q(z') is indefinite, but the sign of Q(z'), z an eigenfunction, cannot be determined. Thus 
we have 

Theorem 15. On the basis of Eqs. (52), the static tensile solutions of the F6ppl approxima- 
tion for uniform load, given in Section 3, are kinematically stable, for compressive 
solutions the eigenvalue problem is indefinite. 

This theorem remains valid for an arbitrary load P(~). The calculations leading to Eqs. 
(53) can be performed by substituting into (52) Us' . . . . .  W~" from (13) and (14), resulting in 

(53a) 

with f(~) = (Q(~) - Q-)/T, g(~) = ,  + ?(~)2. This leads to a selfadjoint eigenvalue problem 
as before, with -/x and q(x) in (54) replaced by functions r(x) and s(x), respectively, and 
f'(++_l)-T-r(1)g'(++_ 1)=0  in (55a). Lemma A remains valid, as the determinant in the 
reduction to a first order system is again s ( x ) -  r2(x)= c * 0. Lemma B remains valid 
also, with 3,x and q(x) in D(x) replaced by r(x) and s(x), respectively. Thus ~ is 
selfadjoint, it is positive i f ,  > 0, whence we have 

Theorem 16. On the basis of Eqs. (52) the static solution U, W given in (13) and (14) for 
arbitrary load P(~) is kinematically stable i f ,  is positive. 
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In the case ~ < 0, it m a y  be conjectured that  bo th  infinitely m a n y  posit ive and infinitely 
m a n y  negative eigenvalues occur. This is the case for scalar eigenvalue p rob lems  of the 
fo rm 

- ( p y ' ) '  + qy = ?~ry, a<~x<~b, p ( x ) >  0, r(x) changing sign in ( a, b ), 

together  with appropr ia te  bounda ry  condit ions at x = a, b to make  the p rob lem selfadjoint 
(see K a m k e  [14]). The  equat ions (54) can be rewrit ten in the form 

- z " + S z ' = ) ~ 2 R z '  R=¢-n(q~x3' 1Y)  = R r "  (61) 

The  eigenvalues rn, r 2 of  R are posit ive if c > 0, whereas r n < 0, r 2 > 0 if ~ < 0, I~1 < 1. But 
we have not  been able to prove a result analogous to K a m k e ' s  for the present  problem.  

In  order  to further  examine the case c < 0 and  to compare  the results with those of the 
simplified analysis based on Eq. (42), it was decided to compute  some eigenvalues 
numerical ly.  We first observe f rom the form of Eqs. (54), that two modes  of vibrat ion 
occur: solving (54) for 0 ~< x ~< 1 with f ( 0 ) =  g ' ( 0 ) =  0 and one of the end condit ions at 
x = 1 yields the symmetric mode,  with f ( -  x ) =  - f ( x ) ,  g ( -  x)  = g(x). A solution of (54) 
for  0 ~< x ~< 1 with f ' ( 0 )  = g(0) = 0 and (55a) or (55b) for  x = 1 is defined as the antisym- 
metric mode,  where f (  - x )  = f ( x ) ,  g(  - x )  = - g(x). 

The  differential  equat ions (54) and bounda ry  condit ions (55) are discretized by  a 
me thod  given in Varga [15], using central  differences on a uni form mesh, setting xj =jh 
and ~ = f ( x i ) ,  gj = g(xi), j =  0, 1 . . . . .  m + 1. The set of  difference equat ions is then 

T a b l e  1 

A p p r o x i m a t e  e i g e n v a l u e s  ( c o l u m n s  1) b a s e d  o n  (44), e i g e n v a l u e s  ?~2 b a s e d  o n  (54) a n d  (55b),  s y m m e t r i c  m o d e  

( c o l u m n s  2) a n d  a n t i s y m m e t r i c  m o d e  ( c o l u m n s  3), p :  = p/E  

1 2 3 1 2 3 

v = 0 0 .182 0 .182 0 .219 

p = 0.01 0.585 0 .539 0 .936 

c = 0 .0255 1.581 1.483 2.116 

3.091 2 .905 2 .836 

5.107 4 .789 

p = 0 0 .846 0 .828 0.631 

ff = 0.1 2.718 1.877 3.471 

= 0.1185 7.339 5.628 4 .294 

14.350 11.139 8 .210 

23.702 13.435 14.660 

1 2 3 1 2 3 

u = - 0 . 2  0 .177 0.121 0.041 

f i  = 0.01 0.521 0 .370  0 .234  

c = 0 .0089  0 .997  0 .738 0 .546 

1.306 1.004 0 .982 

1.824 1.260 1.538 

p = - 0.2 1.035 0 .878 

/~ = 0.01 - 0 . 1 9 1  - 0 . 1 3 1  - 0 . 0 4 5  

c = - 0 .0093 - 0 .564 - 0.403 - 0 .253 

- 1.121 - 0 . 8 0 7  - 0 . 5 8 9  

- 1.862 - 1.341 - 1.059 

1 2 3 1 2 3 

p = - 0.2 - 39.42 22.20 

/~ = 0.01 - 9.87 2.47 

c = - 0 . 1 9 9 6  - 0 . 4 9 0  - 0 . 4 9  - 1.97 

- 4.432 - 4.42 - 7.86 

- 12.31 - 12.26 - 17.63 

- 2 4 . 1 3  - 2 3 . 9 6  - 3 1 . 2 3  

v = - 0.5 2 .189 1.72 6.34 

,O = 0.1 - 0 . 5 0 1  - 0 . 6 2  - 0 . 1 8  

c = - 0 . 0 6 2  - 1.280 - 1.99 - 1.23 

- 3 . 7 5 2  - 4 . 0 2  - 2 . 9 2  

- 7 . 4 2 1  - 6 . 7 1  - 5 . 2 8  

- 8 . 2 9  
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equivalent to a system of N = 2m + 1 linear equations Ay = ?~2h2Ey, where A = A r and E 
are real (N, N)-matrices and y is an N-vector. E is diagonal with all elements 1 except the 
first one, which is 1/2. The matrix A is sepdiagonal, further details are found in a 
forthcoming report [16]. 

The eigenvalues X 2 and eigenfunctions fj, gy (for uniform load) were calculated by the 
QR-method for mesh spacings h = 1/20 and h = 1/40. As a check, the resulting values for 
%2 and the initial values for ( f ,  g, v, z) at x = 0 were taken to solve the system (56) by a 
high-accuracy Runge-Kutta method, the solution at x = 1 should then satisfy the boundary 
conditions (55) approximately. An additional check is provided by the orthogonality 
condition (59). With the ordering IXZ, I ~< 1~,2+ 11 and h = 1/40, the first four eigenvalues, say, 
may safely be assumed to differ from the exact values by less than 1% (on the basis of the 
above checks and the O(h 2) difference approximation employed). 

In Table 1, the first few eigenvalues c X 2 from Eq. (46) (or (49)), based on the 
approximate model (42), are shown in columns 1, they refer to symmetric modes, because 
the case (ib) does not occur for the chosen values of p and 1,. The first few approximate 

SYM 
w I 

ASYM 

3.3=2.116 

w A,-- i 

,j 
• 012'I.&~0~ 018' 110 

Y ~3=2,116 
Fig. 6. F6ppl kinetic stability: the first three symmetric (SYM) and antisynunetric (ASYM) eigenfunctions u(x), 
w(x) for ~ = 0, p = 0.01. 



173 

SYM 

u ] ,,l 3 =5.6~ 

,,11=0.828 

\ 
x 

2 ' ~  1°~ 

~ :5.628 ~,,JA2:1.877 
ASYM 

' ":,~.~. ' o'.~ ' ,~.c A2:3.Z.72 /1.3=z.2gz, 
X 

if-'1.0 

w "1-I=0631 

X 

3=~.294 

Fig. 7. F6ppl kinetic stability: the first three symmetric (SYM) and antisymmetric (ASYM) eigenfunctions u(x) ,  
w(x) for g = 0, p = 0.1. 

eigenvalues X~ for symmetric and antisymmetric modes, calculated by the preceding 
difference method, are displayed in columns 2 and 3, respectively. For ~, = 0 p = 0.01, 
there is fair agreement of columns 1 and 2, but for larger values of/~ and ~, * 0, only 
qualitative common trends are observed, due to the approximation involved in model (42). 
The results also cast some doubt on the validity of the nonlinear beam model studied in 
[12]. In some cases c < 0, where Eq. (49) has one positive solution, one positive k 2 is also 
found among the lowest few eigenvalues of (54) and (55). With increasing - c ,  no positive 
roots are found from (49), while the number of positive ~2 found from the (discretized) 
equations (54) and (55) seems to increase, although the "density" of the negative 
eigenvalues is much higher. 

In Figs. 6 and 7, the first three symmetric and antisymmetric eigenfunction pairs 
(f(x), g(x)), denoted again by (u, w) are plotted. In general, both the symmetric w and 
the antisymmetric u have no internal nodes for ~2 = ~ ,  the antisymmetric w and the 
symmetric u both have exactly one node at x = 0. The number of nodes of u and w is 
nondecreasing with increasing X2 (deviations from these trends were observed, see [16]). 
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7. Kinetic stability of the exact normal load solution 

The equations of motion of the exact nonlinear theory of strings are obtained from the 
equations (23) and (32) of Sections 4 and 5 by adding the inertia terms: 

( T c o s O ) x = P U  . ,  ( T s i n O ) x + p ( x ) = p w . ,  (62) 

( T c o s O ) x - p ( l + e ) s i n O = p u , ,  ( T s i n O ) x + p ( l + e ) c o s O = p w t t  , (63) 

for vertical and constant normal load, respectively. Considering only the latter case in 
detail, we shall study the kinematic stability of the static normal load solutions given by 
(35) and (36). It turns out that a complete analytic solution of the stability equations can 
be found, while numerical methods must be employed in the case of vertical load. 

Setting T =  T r + T(x, t), O = 0 r + t~(x, t), etc. in Eqs. (63), with T s = T O =f(e0) ,  0 r = 
- B o x  according to (35), and cancelling the static terms satisfying (32), the resulting 
equations are linearized with respect to the barred variables. Separating the time factor 
e i~'t from T, 0, ~, ~ and denoting the amplitudes again by T, 0, u, w, that is, T =  T(x)C ~t 
etc., the following equations are obtained 

cT '  - TosO' - B l S T  + p~2u = 0 ,  

sT '  + TocO' + B : T  + p~o2w = O, 

c:  = c o s  0 r ( x ) ,  

BI : = pfo - Bo, 

s: = sin O s ( x ) ,  

)Co: = 1 / f ' ( e o ) ,  

(64) 

where f ( e )  = f ( e  o + ~) = f ( eo )  + ~f ' (eo)  = T O + T has been used. Similarly, we get from 
(20) upon linearizing and cancelling static terms 

1 . , ,, 1 ( c w ' -  su ' ) .  (65) T =  -~o ( CU + sw ),  0 -  l + e ~  

Inserting these relations into (64) and simplifying yields, after some algebra, 

(Plu ' ) '  + (P2w') ' - P l o W ' +  otoEfo u = 0, (66) 

( Pzu ' ) '  + ( P3w') ' + pfo u'  + pw2fow = O, 

where Pl(x) = a + fie 2, P2(x) = tics, Pa(x  ) = a + fls 2, a = p f o / B o ,  ti = 1 - a. In Problem 
H, we have u = w = 0 at x = ± 1 whereas T = w = 0 in Problem S. Hence the boundary 
conditions are 

u ( +  I ) = 0 ,  w ( ± l ) = O  (Problem H), 

u ' ( ± l ) ± B 2 w ' ( + l ) = O ,  w ( ± l ) = O  (ProblemS), 

(67,H) 

(67,S) 

where B 2 = - t a n  B0, which results from (65). Eqs. (66) and (67) constitute a linear 
eigenvalue problem for u, w and ~: = ptoEfo . Setting z = (u, w) T, eqs. (66) can be written in 
matrix form 

Pl P2) 
Lz: = - ( A ( x ) z ' ) ' - p f 0 B z  ' =  Xz ,  A = I;)2 1)3 '  68> 
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We note the close similarity between eqs. (54) and (66). In fact, Lemma A holds also for 
(66) if e 0 * 0, which is proved in exactly the same way, that is, by deriving a first order 
system of the form (56) with regular (4,4)-matrices A0, B o equivalent to (66). However, due 
to the presence of the term Bz' in (68), we are not able to get a complete analogue of 
Lemma B. We do obtain self-adjointness for Problem H, but not for Problem S. In the 
former problem, we find X. >/ - c  for tensile solutions, bu t  not X. > O. 

Theorem 17. For e o * 0, the eigenvalue problem (66) and (67,H) is selfadjoint, hence all 
eigenvalues h ,  are real. The set of eigenvalues forms a infinite sequence with no finite limit 
points, the associated eigenfunctions form a complete orthonormal system. 

Proof. Let z = (u, w) r and v = (fi, if)r, where both u, w and fi, i satisfy (67,H) and are 
twice differentiable, then we have, integrating by parts and using A = A r 

P + I  T e + l  t 
(v, L z ) : = J  v Lzdx -v rAz ' ]  +' = _ , + ( v ' , A z ' ) - p f o )  ( i u  ~w')dx 

-I 

(z', Av') +pfof~ll( = u i ' -  wfi')dx = (z, Lv). (69) 

A(x)  is invertible for all x, as det A = a =foTo/(1 + e0) * 0. The self-adjointness of L now 
implies that all eigenvalues are real. In view of the regularity of the system (68), the 
existence of eigenvalues and eigenfunctions follows by the same argument as in the proof 
of Lemma B of Section 6, completing the proof of the theorem. 

In Problem S, the above integration by parts, with eqs. (67,S), yields the boundary 
term, 

1 = ~ l ( P l U t 2 ¢  - P 2 w t ) ] ~ l  

= (P2(1)-B2Pi(1))[~(1)w'(1)+f i ( -1)w'(  - 1 ) ]  :¢: z T A v t l + I j  _ 1- ( 7 0 )  

It is easily checked that Pz(1) * B2PI(1 ), whence problem (66) and (67,S) is not self-ad- 
joint. We shall show below by a different method, that there exists an infinity of real 
eigenvalues, but we cannot exclude the occurrence of complex eigenvalues in Problem S. 

Theorem 18. The eigenvalues Xn of problem (66) and (67,H) for e 0 > 0 are bounded from 
below, that is, l im,~  ~7% = + oo. More precisely, 

X~>~ml(eo)-m2(eo),  ml: = l~r2 min(1, ct) > O, m2=2~rpfo>O , 

for0 (71) 
a =  1 + e-- - -~"  

If p, e o satisfy a < 1 and 4p < ¢rT0/(1 + eo), then all eigenvalues are positive, and the 
static tensile solutions for normal load, given in Section 5, are kinematically stable. 

Proof. Let z be a normalized eigenfunction with eigenvalue X, then we have from (68), 

(z, Lz)  = (z', A z ' ) - p f o ( z ,  Bz') = X(z, z) = x f + l ( u  2 + w2)dx = X. (72) 
a_l  
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Calculat ing the eigenvalues a i of  A(x) ,  we find a 1 --- 1, a 2 = a =foTo / (1  + e0). Thus  A is 
posit ive for  e 0 > 0, and we have (z', Az')>~ min(1, a)(z ' ,  z'). The  term involving B is 
es t imated as follows, using the Schwarz inequali ty 

+ " " :  (s ) ' :  I(,, ~")1-< f-i I(lutWi + iUWtI)dx <'~ ( S w2dx f u'2dx ) + ':d f f  w'2dx 

.< (S<u:+ w. ) ' :  <,,..,,+,, w,,,):,, u.,,+,, w.,,. 4 <,,u.,,:+ ,, w.,, (73) 

where 

( f+llu2dx ) I/2 Ilull: -- Ilull 2 + Ilwll 2 = 1, 

and the following est imate has been used: Let  u(x) ,  v ( x )  be any  functions vanishing at 
x = + 1 and satisfying Ilull 2 + IIvN 2 -- 1, then, as will be  proved below, 

q/" 
Ilu'll 2 -4-IIw'll 2 ~ ~ (llu'll + IIv'll). (74) 

N o w  we have Ilu'l12 + IIw'll 2 =(z ' ,  z')>~ *r2(z, z ) / 2  = ~r2/2, since ( ¢ r / / 2 )  2 is the smallest  
eigenvalue of u " +  7tu = 0, u = 0 at x = + 1. Collecting the preceding est imates and 
inserting them into (72), we obtain  

4 \ z ' ,  ½,r 2 min(1 ,  a )  x > (r~n(1, ~)-~p:o)( z')>- - 2~p:o, 

the last te rm being positive if a < 1 and ~ra > 4 p f  o. 
It  remains to prove  (74). F r o m  (a  + b) 2 ~< 2(a  2 + b 2) we find 

2 Ilu'll2 + IIv'l12 ~r 
>1 Ilu'll + IIv'll >/2(l lull  + Ilvll) > / ~  (75) 

Ilu'll + IIv'll 

a s  a 2 + b 2 = 1 implies a + b >~ 1 for a, b >1 0, and u(1) = u( - 1) = 0 implies Ilu'll >I (~r/2)]lull 
by the above argument .  This completes  the p roof  of  the theorem. 

Remark.  In order  to improve  the est imate (71), more  precise in format ion  on the value of 
(z, Bz ' )  would be needed. The  bound  m l ( e o ) -  m2(eo)  is positive for sufficiently small p ,  
but  will turn negative if eo /p  becomes small, as m 1(0)= 0. In the latter range, mult iple  
tensile solutions m a y  exist, according to Eq. (36). The  actual occurrence of  negative 
eigenvalues X n in this range would then cause some tensile solutions to be unstable.  

The  above appraisal  for  (z, Bz ' )  holds independent  of  the sign of e 0. In  the case e 0 < 0, 
A ( x )  is indefinite (a  1 = 1, a 2 = a < 0), but  the sign of (z', Az ' )  in (72), depends  on the 
range of z', which seems difficult to est imate a priori. Hence,  instabil i ty of  compress ible  
solutions cannot  be  deduced f rom (72). 

Recall that  bo th  Problems H and S are self-adjoint within the F6ppl  approx imat ion  
e o << 1, T O = Eeo, fo = E -  1. The reason is that  the term p f o B z  ' in (68) is negligible in this 
case. We then have sin 00(x)---- - B o x ,  a = e0/(1 + e o ) - - e o ,  f l - -  1, B o - - p / T  o = "l', Pfo = 
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p / E ,  and therefore, approximately 

Pl = 1, />2 = - 7 x ,  P3 = e0 + 3 '2x2 = q ( x ) ,  

in terms of the quantities defined following Eq. (54). For any elastic material T << E, 
which means p / E  << ,/. So the terms of pfo u' and pfo w'  are indeed small compared with 
the other terms in eqs. (66). Furthermore, using B 2 = - t a n  B 0 = - 7  in (70), we have 
P2(1) - B2PI(1) = - ' / +  -y = 0 in Problem S. Hence all non-selfadjoint terms disappear for 
small e 0. 

Returning to the general case, we now proceed to give a different formulation of the 
stability problem, rather than attempting a direct analytic solution of eqs. (66). As the 
nonlinear eqs. (63) are rather complex, when expressed in terms of the variables u, w via 
(20) and (21), we eliminate u and w to get a more convenient set of the nonlinear dynamic 
equations in terms of the variables 0 and T (or e). Differentiating (63) with respect to x 
and substituting from (20) for Ux,, w~tt, two equations are obtained, which are added 
(subtracted) after multiplying the first one by cos 0 (sin 0) and the second one by sin 0' 
(cos 0). The result is 

T~ x - TO~ - pqOx = p ( q,t  - qO,2 ) , 

TOxx + 2T~Ox + Pqx = p(qOt, + 2qtOt), q: = 1 + e = 1 + g ( T ) ,  

(76) 

(see [ 17] for an equivalent transformation). For T > 0, (76) is a set of nonlinear hyperbolic 
equations in T and 0. Similar equations can obviously be derived from (62). The boundary 
conditions w(1, t) = 0, u(1, t) = p now transform into nonlinear conditions for T and 0, 
namely 

T(1, t)Ox(1, t )  = p ( 1  + g ( T ) ) ,  f0 1q cos Odx = 1 + v 

which result from (63) after setting u ,  = w, = 0 at x = 1 and eliminating sin 0, cos 0. For 
the linearized equations below, the boundary conditions are much simpler. 

The stability equations are now obtained by setting T = T~ + T(x, t), 0 = 0 s + t~(x, t), 
with T s = T o, Os = - B o x  as before, and linearizing (76) with respect to T and O, which 
yields, upon cancellation of the static terms satisfying (32) 

Txx q- BoB1T q- BoToOx = Pfo~t, 

ToOxx + ( B  l - B o ) T  ~ = 0(1  + eo)/~, ,  
(77) 

where B 1 and f0 have been defined in (64). Separating e i'~t from T and/~, and denoting the 
amplitudes again by T ( x )  and O(x), we have the following differential equations, which 
can also be derived from (64) and (65) by eliminating u and w, 

v " ( x )  + SoToO'(x) + (SOS, + p , o % ) r ( x )  = O, 

ToO"(x ) + ( B, - B o ) r ' ( x )  + p(1 + eo)6O20(x) = O. 
(78) 
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With one of the following two sets of boundary conditions 

T'(_+ 1 ) = 0 ,  O'(+_I)+(B1/To)T(+_I)=O (Problem H),  (79,H) 

T(__ 1) = 0, O'(+_I)+_(B2/To)T'(+_I)=O (ProblemS) ,  (79,S) 

where B 2 = - - t a n  B 0, eqs. (78) define a linear eigenvalue problem for T, 0 and 0) 2. As the 
coefficients in (78) are constant, there is an elementary solution, together with a transcen- 
dental equation for ~o 2. This is also true for the eigenvalue problem resulting from the 
normal load problem (40), but not for the vertical load stability problem, because T s and 0~ 
given by (24) lead to linear equations for T and 0 with variable coefficients, not solvable in 
closed form. 

It remains to derive conditions (79). Inserting T = T~ + T, . . . .  w = w s + ~ into (63), 
linearizing and setting x = 1, u = w = 0 (Problem H), we obtain with c o = cos B o, s o = 

- sin B o, 

c0T'(1 ) - s o ( B 1 T ( 1  ) + To0'(1)) = 0, (80a) 

s0T'(1 ) + co(B1T(1 ) + To0'(1)) = 0, (80b) 

and corresponding equations for x = - 1. Since c 2 + s 2 = 1, T'(___ 1) = 0 and BIT(+ 1) + 
TOO'(+ 1)= 0 follow. As (80b) also holds in Problem S, we get the second condition of 
(79,S). 

The static solution is symmetric because of P = const, thus the above solution T, 0 
splits into symmetric and antisymmetric modes in the way described in Section 6. Hence 
the eigenvalue problem is considered on 0 ~< x ~< 1, with u(0) = w'(0) = 0 replacing the 
conditions (79) at x = -  1 for symmetric modes, and similarly u ' (0 )=  w(0)= 0 for 
antisymmetric modes. Starting from (63) and proceeding in the way just described, but 
setting u = 0 at x = 0, we obtain T ' (0 )=  0 instead of (80a), while (20) yields, upon 
linearization 

sin Os(x ) + (1 + e0 )0cos  Os(x ) = ~x, 

so that w ' (0)=  0 implies 0(0)= 0. Similarly, we find T(0)=  0 ' (0 )=  0 in the asymmetric 
case. In summary, we have the following boundary conditions for Problems H and S: 

( H )  T'(1) = 0'(1) + (B,/To)T(1) = 0, T'(0) = 0(0) = 0 for symmetric modes, (81) 

(S )  T(1) = 0'(1) + (B2/To)T'(1) = 0, T(0) = 0'(0) = 0 for antisymmetric modes. 

(82) 
The solution of (78) is obtained in the form (T, 0 ) =  (EoA, C)e rx with Eo: = To/e o. The 
resulting linear equations for the coefficients A, C have nontrivial solutions iff their 
determinant vanishes. Setting A = 1, the solution of (78) reads 

4 4 

7"/Eo= E/<e r'x, 0= E < < e  r,x, < = ( - r ,  eo o)-'(r?+boB +XfoEo), 
i = 1  i f f i l  

(83) 
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r 4 + b ( e o ) r 2 + c ( e o ) = O ,  b ( e o ) :  = X ( E o f o + k o ) + B ~ ,  (84) 

c ( e o ) :  = X k o ( X f o E o + B o B l ) ,  X = Oo)2Eo 1, k o =  1 + e o  1, 

provided e o :~ 0 and the roots r i, i = 1 . . . . .  4 of  Eq. (84) are distinct. The coefficients Ki are 
to be determined f rom the boundary  conditions (81) or  (82). 

The roots r~ depend on e 0 and X. The discriminant of  (84) can be written as 

b ( eo )  2 -  4 c ( e o )  = [ h ( E o f  o -  ko)  +Bo2] 2 + 4 X k o ( B  o -  B , )  = "Q(X) .  ( 8 5 )  

Lemma C. The quadratic form Q(X), ~ real, is positive definite if e 0 < 0. For  e 0 > 0 it is 
indefinite, if f ( e o ) / f ' ( e o ) <  2(1 + e0), otherwise it is positive definite. When  Q(X) is 
indefinite, both  zeros of  Q ( h )  = 0 are negative. 

Proof.  Rewriting Q(X) in the form AX 2 + 2BX + C, one finds 

A C -  = ( E o f o  - k o ) 2 B  4 - (21,oBo( o - B I )  + ( E o f o  - 1 ,o) )  = 

= -4k~B3o(Bo - B1) = - 4 k 2 B  3 [2(1 + eo) - f ( e o ) / f ' ( e o )  ] . 

For  e o < 0, T O and B 0 are negative, implying A C  - B 2 > 0. For  e o > 0, B o is positive, but  
the term in the brackets may be positive or negative as stated in the lemma. The real roots 
11, l 2 of AX 2 + 2BX + C = 0 satisfy lll 2 = C / A  > 0 and 

- A ( I ,  + 12) = 4koBo(  Bo - BI)  + ( Eofo - ko)  B2 = 2koBo(2Bo - B1).  

When  Q(X) is indefinite, e o > 0 and 2B o - B  1 > 0 ,  consequently 11 and l 2 are both  
negative. 

Corollary. For  e o < 0, the roots r i of  (84) are all distinct. The same holds for e o > 0 if 

2(1 + eo) < f ( e o ) / f ' ( e o ) .  

Remarks.  Q(X) is always positive for large Ih[. For  e o > 0, there is a narrow range of  h,  
/2 < ~ </1 < 0, where Q ( h )  < 0 if f ( e o ) / f ' ( e o )  < 2(1 + e0) (which is always satisfied if 
f ( e o )  = Ee o, e 0 > 0), and there are double roots if X = l I or l 2. These cases can occur if and 
only if p,  e o are such that h ~ [l 1, 12] happens to be also a root  of  the transcendental  
equat ion that determines the eigenvalues X, (see eqs. (90)-(93) below). 

The dependence of  the roots r 2 of  (84) on e o and X can now be summarized as follows. 

e o > 0 (1) 
(2) 

e o < 0 (3) 
(4) 

?t > O, implies b 2 - 4c > 0 and b > O, with (a) c < O, (b) c > O. 
X < O, admits a range b E - 4C < O, r 2 complex. If  b E - 4c > O, the subcases are 
(a) c < 0 ,  ( b ) c > 0 ,  b > 0 ,  (c) c > 0 ,  b < 0 .  
X > 0, implies b 2 - 4c > 0, with (a) c < 0, (b) c > 0, b > 0, (c) c > 0, b < 0. 
X < 0, implies b 2 - 4c > 0, with subcases (a), (b) and (c) as in (3). 

The signs of  the roots in the three subcases are, denot ing the two roots r 2 by m n and m2: 

( a )  m 1 > O, m 2 < 0 ( b )  m I < O, m 2 < 0 ( c )  m I > O, m 2 > O. 



180 

In terms of the quantit ies r i, Ci defined by (83), we have 

,-,= mgC,=-,'2, C ,=-C2,  c3 = - c 4 .  

The  list is to be comple ted  by  some obvious transit ion cases such as c = 0 in (1) with 
m ~ = 0 ,  m 2 < 0 ,  and by the case b 2 = 4 c  for  e 0 > 0 ,  ?~<0,  where m ~ = r n 2 =  - b .  For  
materials  f ( e ) =  Ee (B 1 = - p / T o )  the case (2a) cannot  occur; in case (2) one has b * 0. 

It  remains to determine the constants  K~ of  (83). We shall consider one case in detail, it 
will be seen f rom the solution process that  all other  cases can be treated in exactly the 
same way. Consider  Problem H for symmetr ic  modes,  and suppose that  e0, ~ are such that  
subcase (a) applies, that  is, rl. 2 = + ~ and r3. 4 = +_-i(-m 2 . The bounda ry  condit ions 

0(0) = T'(0) = 0 of  (81) are satisfied by  setting K 2 = K~, K 4 = g 3 (in all subcases (a), (b) 
and  (c), and also in Problem S). Thus we have 

where s: = m~-~, B: = - ~ 2 ~ 2 -  The  remaining condit ions of  (81) yield 

sKl sinh s - BK 3 sin'B = 0, (86) 

(sC,  + E , ) K ~  c o s h s +  ( i f l C 3 + E , ) K  3 c o s f l = 0 ,  E I = E o B I / T  o. 

The determinant  of  this system must  vanish for solutions (T, 0) :~ (0, 0) to exist. Insert ing 
the real constants  CI, iC 3 f rom (83), the following t ranscendental  equat ion for  the 
determinat ion of the eigenvalues ~ results: 

s ( f l 2 - X  ') t a n h s - f l ( s Z + X  ') t a n / 3 = O ,  X': = ) , f o E  0. (87) 

Recall  that  s and fl are functions of ?~. Solving (86), the eigenfunctions are, up to a constant  

T ( x )  = B 0 To( fl sin fl cosh sx + s sinh s cos fix ), 
(88) 

O( x ) = - s -  '(  s 2 + BoB ' + ?~')fl sin fl sinh sx + f l -  '( f12 _ BoB1 _ X')s  sinh s sin fix. 

The  t ranscendental  equations for subcases (b) and (c) are 

fl, tan f l , ( f l 2 _  • , )=  f12 tan f12(f12_ h ' ) ,  s I tanh s,(s22 + X ' ) =  s 2 tanh s2(s  2 + h') ,  

(89) 

respectively, where sj = f ~ j  > 0, flj = ~ f ~ j ,  j = 1, 2, with corresponding expressions for  

the eigenfunctions. Equations.  (87) and (89) can be combined  into the single equat ion (90) 
below. The  transit ion case c = 0 in (1), r I = r  2 = 0 requires that  all K i are zero, unless 
fl = n~r, n = integer. The  double root  case m 1 = m 2 could easily be treated by  including 
terms Kxe  rx in the expressions for T and 0. Apar t  f rom these cases, which can occur  only  
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for exceptional values of p and v, the solution of the eigenvalue problem (78) and (81) 
Problem H, is complete for real r 2, the eigenvalues X, must be found numerically from 
(90). The only eigenvalues not covered are those in the interval (ll, 12) for e 0 > 0, if there 
exist any (see Remarks following Lemma C). 

The boundary conditions (82) at x = 0 for antisymmetric modes are satisfied by setting 
g 2 = - - g l ,  g 4 = - g 3 ,  otherwise the calculations proceed in the same way, in both 
Problem H and Problem S. We list the results for the transcendental equations together 
with the case treated above, but omit listing the eigenfunctions analogous to (88). 
Problem H, symmetric modes: 

s (  t 2 + )~') tanh s - t (S 2 + )k') tanh t = 0; 

Problem H, antisymmetric modes: 

(90) 

s (  t 2 + )k') tanh t - t ( s  2 + )~') tanh s = 0; 

Problem S, symmetric modes: 

s 2 _ t 2 = Bo B2 (s tanh s - t tanh t ) ; 

(91) 

(92) 

Problem S, antisymmetric modes: 

s 2 - t 2 = BoB2(s  coth s - t coth t) ,  (93) 

w h e r e s = s ( X ) , t = t ( X ) , s =  m~l  i f m  l > 0 , s = i  -f~m~l i f m  l < 0 , a n d t =  m~2 i f m  2 > 0 ,  

t = i - (Z~2  if m 2 < 0. Note that (90)-(93) are valid for e 0 > 0 and e 0 < 0, for arbitrary 

elastic material T = f ( e ) ,  and for all real )~ *: 0. For Problem S, only the real eigenvalues 
are given by Eqs. (92) and (93), except those in the interval [l l, 12] for e 0 > 0. The analysis 
of the solutions of (84) is more involved for complex values of )~ not excluded in Problem 
S. 

Finally, we propose to analyze the preceding equations for large I)~ 1. The discussion will 
be carried out in detail for one particular case, the treatment of the remaining cases is 
analogous. 

Consider Problem H for symmetric modes, e 0 < 0 and )~ < 0. From (84) we have 
C(eo) < 0 if I~1 is sufficiently large, thus case (4a) with m I > 0, m 2 < 0 and (87) applies. We 
wish to show that (87) has infinitely many solutions X < 0. For this purpose, rewrite (85) 
a s  

b 2 - 4 c = b 2 ~ 2 ( l + 2 b z ~ , - ' + O ( x - 2 ) ) ,  b, = f o E o - k  o > 0 ,  

for [)q ---, oo, where b 2 is a constant independent of )~. With this, the following asymptotic 
expressions for the solutions r 2 of (84) are obtained 

m 1 = F (X) :  = - f o E o X - ½ ( B ~  + bib2) + O ( X - I )  = s 2 > 0, (94) 

= , m 2 G ( ~ , ) : = - k o X - I ( B  o b , b 2 ) +  < 0 .  (95) 

Inserting these expressions into Eq. (87) we find, in terms of gj = ( foEo)  1/2, g2 = ( - -  k o )  1/2,  
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and X = Ihl 1/2, 

- g , X  tanh[glX(1 + O ( x - Z ) ) ] b , X 2 ( 1  + O( X-2))  

+g2Xtan[gzX(1 + O ( x - Z ) ) ] ( B  2 + blb2)(½ + O ( X - 2 ) ) = 0  (96) 

for X ~ oo. Dropping all O(X-2)_terms in (96), we obtain 

H ( X ) :  = X 2 tanh gl X -  g3 tan g2 X =  0 (97) 

where g3 * 0 is a constant. Observing that X 2 tanh(glX ) is regular for real x, its graph 
must intersect the graph of tan(g2X ) infinitely many times. Furthermore, the function 
H ( X )  takes on arbitrarily large positive and negative values between its zeros. Therefore, 
passing from (97) to (96) by including the terms of order O(X -2) will not remove zeros if 
X is sufficiently large, and it follows that (96) has an infinity of roots X, > 0. 

A similar result holds for e 0 < 0, h > 0. Again case (4a) applies for sufficiently large X, 
except that m 1 = S  2~- G(X) and m 2 = - f l Z = F ( ~ k ) ,  a s  defined by (94) and (95). An 
equation corresponding to (96) is obtained with gl and g2, as well a s  bl X2 and 
(B 2 + b lb2)/2, interchanged, which yields, upon dropping O( X-  2 )-terms, 

tanh g2 X -  g4 X2 tan glX = O. (98) 

The same reasoning as before leads to the conclusion that (98) and therefore (87) has 
infinitely many solutions X, > 0. Thus we have established 

Theorem 19. The eigenvalue problem (78) and (79,H), e 0 < 0 has an infinity of positive 
and an infinity of negative eigenvalues. Hence the static compressive solutions of Problem 
H for normal load are kinematically unstable. 

This result can be regarded as a counterpart of Theorem 18, observing that the two 
problems (66) and (67,H), and (78) and (79,H) are equivalent. The asymptotic method 
may also be used to verify the earlier results for e 0 > 0. If X < 0, case (2c) with C(eo) > O, 
b(eo) < 0 applies, which means that the ~'n are determined by Eq. (90) with both s and t 
real. Following the above procedure leads, up to terms of order O(X-2) ,  to the equation 
tanh g2 X =  CX 2 tanh g~X, C * O, which has no real solutions for X sufficiently large. On 
the other hand, if ~ > 0, case ( lb)  obviously applies, and eq. (90) leads to 

tan(g2 X) - CX 2 tan(g,  X) = O, g, * g2, C * O, (99) 

for large X. Equation (99) has infinitely many solutions, as will be shown below (Lemma 
D). Hence, the earlier results for e 0 > 0, Problem H are confirmed. In addition, the 
existence of real eigenvalues of the nonselfadjoint Problem S, which could not be deduced 
earlier, can now be established by the present method. 

Theorem 20. The eigenvalue problem (78) and (79,S), e 0 * 0 has an infinity of positive 
eigenvalues. If e 0 > 0, there are at most finitely many negative eigenvalues. If e 0 < 0, there 
is also an infinity of negative eigenvalues. Hence the static compressive solutions of 
Problem S for normal load are kinematically unstable. 
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Remark.  In contrast  to Problem H, it cannot  be  asserted that  a / / e igenva lues  are real. 
Appa ren t ly  this case requires a more  subtle discussion. 

Proof .  For  sufficiently large X = I~l 1/2, the same cases (4a), (2c) and ( lb )  apply  to e 0 < 0, 
< 0, e 0 > 0, ~ < 0, and e 0 > 0, ~ > 0, respectively. Inser t ing expressions (94) and  (95) for 

m l, m 2 into Eq. (92), we obta in  equat ions of  the following type, upon  dropping  terms of 
order  O ( X  -2 )  

X = c  1 t a n h ( g l X ) + c  2 t a n ( g 2 X  ) for e0 < 0, X < 0 ,  (100) 

X = c 3 t a n h ( g , X ) + c 4 t a n h ( g 2 X  ) for  e 0 > 0 ,  X < 0 ,  (101) 

X = c s t a n ( g , X ) + c 6 t a n ( g 2 X  ) for e0 > 0, X > 0 ,  (102) 

where gl, g2 have been defined following Eq. (95), with gl * g2, ci are constants.  The  same 
reasoning as before  shows that  Eq. (100) has an infinity of  solutions and that  Eq. (101) has 
no solutions for X sufficiently large. I t  remains  to discuss Eq. (102). 

L e m m a  D. Let f ( x ) ,  g ( x )  be cont inous  for  x > 0, f ( x ) *  O, and let a,  fl be  positive 
constants  a * ft. Then  the equat ion 

tan a x  = f ( x )  tan f ix  + g ( x )  = : h ( x )  (103) 

has infinitely m a n y  solutions x n > 0, with limn_. ~xn = oo. 

Proot .  Assume 0 < a < fl and denote  the poles of tan a x  and h ( x )  by x ,  and Ym, 
respectively, that  is, 

x .  = rr(2n + 1)/2t~, Ym = rr(2m + 1 ) /2 f t .  (104) 

We  choose odd integers M, N such that  

2 m + 3  M + 2  fl M 2 m + l  
2 . + - - - - - S  = N + - - - - - - 2  < - < - - -  ( 1 0 5 )  a N 2 n + l  " 

I f  f l / a  = r is rational,  select an even integer k such that  kr is even. Setting M = kr  - 1, 
N = k - 1, (105) follows. The  modif ica t ion of the a rgument  for f l / a  i rrat ional  is left to the 
reader.  The  left hand  inequali ty of  (105) can be rewrit ten as 

2 m + l  fl < - 1  
2 n + l  a 

o r  

7/" 

-~--~(2m + 3 ) <  ~-~ (2n + 3) 

which means  Ym+l < Xn+l" Similarly, the right hand  inequali ty of  (105) is equivalent  to 
x n <y , , .  N o w  tan a x  is cont inuous for ym<~X<~y,,+t, while h ( x )  takes on every real 
n u m b e r  between its poles y,, and Y,,+l- Therefore,  the graphs of tan a x  and h ( x )  must  
intersect at least once at some x,  Ym < X < Ym+ ~" The  periodici ty of  tan x then implies the 
existence of infinitely m a n y  solutions of  (103), which contains  the special cases (99) and 
(102). 
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Table 2. 
Eigenvalues based on (90), (91), Problem H, symmetric mode (column 1), antisymmetric mode (column 2) 

1 2 1 2 

p = 0 0.1781 0.2354 
ff = 0.01 0.5744 0.9864 
e 0 = 0.02614 1.5665 2.2137 

3.0719 2.6556 
5.0813 4.0259 
7.5919 6.2819 

p = 0 0.7541 0.8058 
ff = 0.1 2.4678 3.0434 
e 0 = 0.1327 6.9363 4.6888 

10.643 10.229 
14.088 18.229 
23.228 23.033 

1 2 1 2 

p = -0.2 0.1448 0.0523 
p = 0.01 0.4779 0.3034 
e o = 0.00875 0.9561 0.7289 

1.3265 1.3244 
1.7561 2.0868 
2.5782 2.9981 

p = - 0.2 - o. 1576 - 0.0566 
ff = 0.01 -0.5155 -0.3202 
e o = - 0.00893 - 1.0520 - 0.7653 

1.1291 3.5710 
11.023 23.360 
40.663 62.877 

Remark. It  is obvious from the structure of eqs. (91) and  (93) that Theorems 19 and  20 
remain  valid when restricted to symmetric modes or to ant isymmetr ic  modes. 

8.  N u m e r i c a l  r e s u l t s  

The t ranscendenta l  equat ions (90)-(93) were solved numerical ly  by a combined  bisection- 

secant method, taking f ( e ) :  = Ee. The first few eigenvalues, for some selected values of p 

and  p ( = p / E ) ,  computed from (90) and (91) are shown in Table  2. They should be 

compared with those of the F6ppl  approximat ion  in columns 2 and  3 of Table  1. The 

agreement  is very close for ~ = 0, p = 0.01. The difference between vertical and  normal  

load becomes more appreciable for/~ = 0.1, where the eigenvalues differ by 10 to 20 per 

cent. Considerable  differences between the values of Table  1 and  2 are observed in 

part icular  for negative ~, where the static solutions for vertical and  normal  load behave 

significantly different. 
In  order to compare the displacement  modes of the exact theory for normal  load with 

the FOppl approximation,  we calculate u, w from the eigenfunct ions (87). This may be 

done  in several ways, the simplest one is by subst i tut ing (87) into (64). For  case (a), that is, 

m 1 > 0, m 2 < 0, Problem H, we obtain,  up to a constant  factor, 

u(x )  = M , ( x )  cos O~(x) - M2(x ) sin O,(x), 

w(x )  = M2(x  ) cos Os(x ) + M , ( x )  sin Os(x), (106) 

where 

sin fl sinh sx - s i n h  s s in  f i x  (symmetric  modes) 

M 1 ( x )  = ~ cos fl cosh sx - cosh s cos fix (ant isymmetr ic  modes) 



B l s  - j  + C , e o )  sin/3 cosh s x  

+ ( B 1 #  -1 + iC3eo) sinh s cos fix 

B l s  - I + Cteo) cos 13 sinh s x  

- ( B l f 1 - 1  + iC3eo) cosh s sin fix 

(sym. modes) 

(antisym. modes) 
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Alternatively, the preceding formulas may be obtained by first inverting (65), which is 

u'  = foTc  - (1  + eo)SS, w '  = l o T s  - (1  + eo)Oc, 

and then integrating (the integration was done numerically as a check against (106)). 
The displacement modes for the first three eigenvalues are plotted in Figs. 8 and 9 (with 

normalizations chosen for drawing convenience). The shapes of u, w may be compared 
with those in Figs. 6 and 7. The similarity is quite close for small ff and the lower 
eigenvalues. Further results, obtained for parameters 1, and p outside the range where the 

SYM 

~ 1\: o.178 

ASYM /l  1:0.235 

J ~  2 = 0"986 

.o 

~,2 k3 = 221l" 

w , i  I = 0.235 

3. 2 = 0.086 

Fig. 8. Normal load kinetic stability: the first three symmetric (SYM) and antisymmetric (ASYM) eigenfunctions 
u(x), w(x)  for p = 0, p = 0.01, f ( e )  = Ee. 
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SYM 

w ~ " ~ 1 :  0.75/ 

13=6936 ).2= 2.L6B 

ASYM 

B06 

X 

~./A 2: 3.0t.3 

Fig. 9. Normal load kinetic stability: the first three symmetric (SYM) and antisymmetric (ASYM) eigenfunctions 
u(x ) ,  w ( x )  for p = 0, p = 0.1, f ( e )  = Ee. 

F6ppl approximation is acceptable, were found to deviate significantly from those 
contained in Figs. 8 and 9. Calculations have also been carried out for Problem S, based 
on Eqs. (92) and (93). Since they do not show any additional new qualitative features, they 
will not be discussed. 
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Appendix 

The vertical-load solution of Section 4 is applied to the following example 

T = f ( e ) = E ( e + k e 2 ) ,  E > 0 ,  k>~0, (A.1)  

which has properties (i)-(iii) for e >~ 0, and for e > - 1 if k ~< 1/2. The inverse function is 

g ( T )  = [ - 1 + (1 + 4 k T / E ) l / Z ] / ( 2 k ) .  (A.2)  

For constant load p, the solution of Problem H, obtained from (24) and (25), can be explicitly calculated. First, 
an elementary integration yields 

To(x ) = T( x ) / e  = sgn B( Bg + pgx2 ) 1/2, Po = p / E ,  B o = B /E .  

Inserting (A.2) into the expression for u(x), we obtain, upon substi tutingy = (B2o + p2os2)l/2 and integration by 
parts 

/ - I / / 2  

B°(  2~)  T ° ( x ) + p ° x  B o ((B~+p2nx2)'/~ l l + 4 k y  ~ j u ( x ) =  - x + - -  1 -  log + - -  - -  o (A.3) 
Po Bo 2~poJoo l y 2 -  B ~ ) Y" 
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Fig.  10. D e f o r m e d  shapes  o f  the s t r ing  u n d e r  ver t ica l  load ,  exac t  theory :  n o n l i n e a r  m a t e r i a l  f ( e ) / E  = e + e 2 
( ), l i nea r  m a t e r i a l  f ( e )  = Ee ( . . . . . .  ) for  i, = 0, 0.2, P r o b l e m  H .  

Se t t ing  t = ( y -  Bo) 1/2, the las t  t e rm  (A.3)  c a n  be  expressed  in t e rms  of  el l iptic in tegra ls .  F o r  example ,  if 

A0: = B o + ( 1 / 4 k )  > 2Bo ,  it b ecomes  

2 1 /2  I / 2  :,(:+,,o] . .  lAo+:  
, o k , / 2 J o ~ , 2 + 2 , o :  d t = A ~ ° / 2 [ F ( ~ ' q ) - E ( " ' q ) ] + Z ~ 2 B ~ z 2  ) 

where  

z = ( T o ( x )  - B o )  1/2, ~" = a r c t a n ( z / 2 ~ o  ) ,  q = ( 1 - 2 B o / A o )  1/2, 

T a b l e  3 

D i s p l a c e m e n t s  u ( x ) ,  w ( x )  for  ver t ica l  ( V )  a n d  n o r m a l  ( N )  l oad  wi th  T / E =  e + ke 2, k = 1 / 2 ,  t = tensile,  

c = compress ive  so lu t ion  

x 0 0.2 0 .4  0.6 0.8 1 

I P = 0 ,  

Po = 0.5 

/ P ~  0 ,  

Po = 0.5 

v = - 0 . 5 ,  

Po = 0.5 

v = - 0 . 5 ,  

Po = 0.5 

p = - 0 . 5 ,  

Po = 0.1 

V u 0.0 0 .046 0.073 0 .072 0 .046 0.0 t 

w 0 .792 0 .749 0 .630 0 .456 0.243 0.0 

N u 0.0 0 .080 0 .139 0.155 0.113 0.0 t 

w 0.841 0 .802 0 .686 0 .504 0 .269 0.0 

V u 0.0 - 0 . 0 1 3  - 0 . 0 9 6  - 0 . 2 1 5  - 0 . 3 5 2  - 0 . 5 0 0  t 

w 1.061 0 .959 0 .760 0 .526 0 .272 0.0 

N u n 0.0 - 0 .088 - 0 .180  - 0 .277 - 0 .383 - 0 .500 c 

w I - 0 . 2 1 7  - 0 . 2 0 8  - 0 . 1 8 0  - 0 . 1 3 6  - 0 . 0 7 5  0.0 

u 2 0.0 - 0 .062  - 0 .134 - 0 .226 - 0 .346 - 0 .500  c 

w 2 - 0 . 4 0 9  - 0 . 3 9 0  - 0 . 3 3 4  - 0 . 2 4 6  - 0 . 1 3 2  - 0 . 0  

u 3 0.0 0.045 0.045 - 0 . 0 3 4  - 0 . 2 1 4  - 0 . 5 0 0  t 

w 3 0.907 0 .854 0 .704 0.485 0.235 0.0 

V u I 0.0 - 0 . 0 9 7  - 0 . 1 9 5  - 0 . 2 9 5  - 0 . 3 9 6  - 0 . 5 0 0  c 

w 1 - 0 .067 - 0 .064 - 0 .056 - 0 .042 - 0 .024  0.0 

u 2 0.0 - 0 . 0 2 2  - 0 . 0 9 7  - 0 . 2 1 2  - 0 . 3 4 9  - 0 . 5 0 0  c 

w 2 - 0 . 7 2 7  - 0 . 6 5 9  - 0 . 5 1 5  - 0 . 3 4 7  - 0 . 1 7 4  0.0 

u 3 0.0 - 0 . 0 1 8  - 0 . 0 9 7  - 0 . 2 1 4  - 0 . 3 5 2  - 0 . 5 0 1  t 

w 3 0 .859 0 .777 0 .610 0 .417 0 .212 0.0 
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and similar expressions if A o < 2Bo, or B o < 0. F(a, q) and E(a, q) are the standard symbols for elliptic 
integrals of the first and second kind, respectively. 

The constant B o is given by the solution(s) of the equations 

[Bo[fol(Bo2 + p~t2)-'/2{ 1+ " ~ k [ - l + (  l+4ksgnB°(B2° + P~t2)l/2)'/2]} dt=~'+ l (A.4) 

involving an elliptic integral again, but for the numerical determination of B 0 this is of no advantage. 
In Table 3 results for some values of v, P0 and k are compared with results for uniform normal load given by 

Eqs. (35) of Section 5, w i t h f ( e )  from (A.1). The value po = 0.5 is too large for compressive solutions to exist (see 
Theorem 6), while for P0 = 0.1, eq. (A.4) has the three solutions B o = -.36745, -.02525, and .02115. On the 
other hand, if the load is normal, we do find three solutions for both Po = 0.5 and 0.1. 

The shapes of the deformed string (X, Y) = (x + u(x),y + w(x)) are displayed in the last two figures for 
both vertical and normal load. 


